These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 6092630)

  • 1. Chloride conductance and extracellular potassium concentration interact to modify the excitability of rat optic nerve fibres.
    Connors BW; Ransom BR
    J Physiol; 1984 Oct; 355():619-33. PubMed ID: 6092630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current-clamp analysis of a time-dependent rectification in rat optic nerve.
    Eng DL; Gordon TR; Kocsis JD; Waxman SG
    J Physiol; 1990 Feb; 421():185-202. PubMed ID: 2348391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionic permeability of K, Na, and Cl in potassium-depolarized nerve. Dependency on pH, cooperative effects, and action of tetrodotoxin.
    Strickholm A
    Biophys J; 1981 Sep; 35(3):677-97. PubMed ID: 7272457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrogenic pump (Na+/K(+)-ATPase) activity in rat optic nerve.
    Gordon TR; Kocsis JD; Waxman SG
    Neuroscience; 1990; 37(3):829-37. PubMed ID: 2174135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of ion conductance changes and of the sodium-pump in adrenaline-induced hyperpolarization of rat diaphragm muscle fibres.
    Kuba K; Nohmi M
    Br J Pharmacol; 1987 Jul; 91(3):671-81. PubMed ID: 2440508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of Na-K-ATPase pump inhibition, chemical anoxia, and glycolytic blockade on membrane potential of rat optic nerve.
    Malek SA; Adorante JS; Stys PK
    Brain Res; 2005 Mar; 1037(1-2):171-9. PubMed ID: 15777766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noninactivating, tetrodotoxin-sensitive Na+ conductance in rat optic nerve axons.
    Stys PK; Sontheimer H; Ransom BR; Waxman SG
    Proc Natl Acad Sci U S A; 1993 Aug; 90(15):6976-80. PubMed ID: 8394004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic optical signals in the rat optic nerve: role for K(+) uptake via NKCC1 and swelling of astrocytes.
    MacVicar BA; Feighan D; Brown A; Ransom B
    Glia; 2002 Feb; 37(2):114-23. PubMed ID: 11754210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chloride-cotransport blockade desynchronizes neuronal discharge in the "epileptic" hippocampal slice.
    Hochman DW; Schwartzkroin PA
    J Neurophysiol; 2000 Jan; 83(1):406-17. PubMed ID: 10634883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons.
    Hotson JR; Prince DA
    J Neurophysiol; 1980 Feb; 43(2):409-19. PubMed ID: 6247461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium pump activity, not glial spatial buffering, clears potassium after epileptiform activity induced in the dentate gyrus.
    Xiong ZQ; Stringer JL
    J Neurophysiol; 2000 Mar; 83(3):1443-51. PubMed ID: 10712471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps.
    Ransom CB; Ransom BR; Sontheimer H
    J Physiol; 2000 Feb; 522 Pt 3(Pt 3):427-42. PubMed ID: 10713967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninactivating, tetrodotoxin-sensitive Na+ conductance in peripheral axons.
    Tokuno HA; Kocsis JD; Waxman SG
    Muscle Nerve; 2003 Aug; 28(2):212-7. PubMed ID: 12872326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic basis of pacemaker generation in dog colonic smooth muscle.
    Barajas-López C; Den Hertog A; Huizinga JD
    J Physiol; 1989 Sep; 416():385-402. PubMed ID: 2481730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium-potassium pump inhibitors increase neuronal excitability in the rat hippocampal slice: role of a Ca2+-dependent conductance.
    McCarren M; Alger BE
    J Neurophysiol; 1987 Feb; 57(2):496-509. PubMed ID: 2435860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones.
    McCormick DA; Pape HC
    J Physiol; 1990 Dec; 431():291-318. PubMed ID: 1712843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiological properties of rat CA1 pyramidal neurones in vitro modified by changes in extracellular bicarbonate.
    Church J; McLennan H
    J Physiol; 1989 Aug; 415():85-108. PubMed ID: 2561793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of an electrogenic sodium pump to membrane potential in mammalian skeletal muscle fibres.
    Akaike N
    J Physiol; 1975 Mar; 245(3):499-520. PubMed ID: 1142216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between glial potassium regulation and axon excitability: a role for glial Kir4.1 channels.
    Bay V; Butt AM
    Glia; 2012 Apr; 60(4):651-60. PubMed ID: 22290828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A chloride conductance activated by adenosine 3',5'-cyclic monophosphate in the apical membrane of Necturus enterocytes.
    Giraldez F; Sepúlveda FV; Sheppard DN
    J Physiol; 1988 Jan; 395():597-623. PubMed ID: 2457684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.