BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1021 related articles for article (PubMed ID: 6093162)

  • 1. Mechanisms of Ca2+ release from sarcoplasmic reticulum of skeletal muscle.
    Martonosi AN
    Physiol Rev; 1984 Oct; 64(4):1240-320. PubMed ID: 6093162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of longitudinal tubules of sarcoplasmic reticulum from fast skeletal muscle.
    Chu A; Saito A; Fleischer S
    Arch Biochem Biophys; 1987 Oct; 258(1):13-23. PubMed ID: 2444161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of chloride-dependent release of Ca2+ in the sarcoplasmic reticulum of rabbit skeletal muscle.
    Sukhareva M; Morrissette J; Coronado R
    Biophys J; 1994 Aug; 67(2):751-65. PubMed ID: 7948689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium transport by sarcoplasmic reticulum of skeletal muscle is inhibited by antibodies against the 53-kilodalton glycoprotein of the sarcoplasmic reticulum membrane.
    Kutchai H; Campbell KP
    Biochemistry; 1989 May; 28(11):4830-9. PubMed ID: 2527558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling of Ca2+ transport to ATP hydrolysis by the Ca2+-ATPase of sarcoplasmic reticulum: potential role of the 53-kilodalton glycoprotein.
    Leonards KS; Kutchai H
    Biochemistry; 1985 Aug; 24(18):4876-84. PubMed ID: 2934086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional characterization of junctional terminal cisternae from mammalian fast skeletal muscle sarcoplasmic reticulum.
    Chu A; Volpe P; Costello B; Fleischer S
    Biochemistry; 1986 Dec; 25(25):8315-24. PubMed ID: 2434126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium uptake and release modulated by counter-ion conductances in the sarcoplasmic reticulum of skeletal muscle.
    Fink RH; Veigel C
    Acta Physiol Scand; 1996 Mar; 156(3):387-96. PubMed ID: 8729699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Transport of Ca2+ in the sarcoplasmic reticulum of skeletal muscles in hyperthermia].
    Avetisova NL; Fedorov AN; Seferova RI
    Ukr Biokhim Zh (1978); 1992; 64(1):93-7. PubMed ID: 1387748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of sarcoplasmic reticulum calcium pump by cytosolic protein(s) endogenous to heart and slow skeletal muscle but not fast skeletal muscle.
    Narayanan N; Newland M; Neudorf D
    Biochim Biophys Acta; 1983 Oct; 735(1):53-66. PubMed ID: 6313055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post mortem changes in Ca2+ transporting proteins of sarcoplasmic reticulum in dependence on malignant hyperthermia status in pigs.
    Küchenmeister U; Kuhn G; Wegner J; Nürnberg G; Ender K
    Mol Cell Biochem; 1999 May; 195(1-2):37-46. PubMed ID: 10395067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A possible role of protein phosphorylation in the inactivation of a Ca2+-induced Ca2+ release channel from skeletal muscle sarcoplasmic reticulum.
    Morii H; Takisawa H; Yamamoto T
    J Biochem; 1987 Aug; 102(2):263-71. PubMed ID: 2444579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of aging on sarcoplasmic reticulum function and contraction duration in skeletal muscles of the rat.
    Narayanan N; Jones DL; Xu A; Yu JC
    Am J Physiol; 1996 Oct; 271(4 Pt 1):C1032-40. PubMed ID: 8897807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the sarcoplasmic reticulum proteins in the thermogenic muscles of fish.
    Block BA; O'Brien J; Meissner G
    J Cell Biol; 1994 Dec; 127(5):1275-87. PubMed ID: 7962089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The regulation of the Ca2+ transport activity of sarcoplasmic reticulum.
    Martonosi A; Kracke G; Taylor KA; Dux L; Peracchia C
    Soc Gen Physiol Ser; 1985; 39():57-85. PubMed ID: 3157219
    [No Abstract]   [Full Text] [Related]  

  • 15. Coupling of calcium transport with ATP hydrolysis in scallop sarcoplasmic reticulum.
    Matsuo N; Nagata Y; Nakamura J; Yamamoto T
    J Biochem; 2002 Mar; 131(3):375-81. PubMed ID: 11872166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional coupling between glycolysis and sarcoplasmic reticulum Ca2+ transport.
    Xu KY; Zweier JL; Becker LC
    Circ Res; 1995 Jul; 77(1):88-97. PubMed ID: 7788886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+-ATPase in skeletal muscle.
    Viner RI; Ferrington DA; Williams TD; Bigelow DJ; Schöneich C
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):657-69. PubMed ID: 10359649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional characteristics of reconstituted sarcoplasmic reticulum membranes as a function of the lipid-to-protein ratio.
    Herbette L; Scarpa A; Blasie JK; Bauer DR; Wang CT; Fleischer S
    Biophys J; 1981 Oct; 36(1):27-46. PubMed ID: 6456781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Modification of an enzymic system of Ca2+ transport in sarcoplasmic reticulum membranes during lipid peroxidation. Molecular mechanisms responsible for increased membrane permeability for Ca2+].
    Kagan VE; Arkhipenko IuV; Ritov VB; Kozlov IuP
    Biokhimiia; 1983; 48(2):320-30. PubMed ID: 6301563
    [No Abstract]   [Full Text] [Related]  

  • 20. Phospholamban-modulated Ca2+ transport in cardiac and slow twitch skeletal muscle sarcoplasmic reticulum.
    Movsesian MA; Morris GL; Wang JH; Krall J
    Second Messengers Phosphoproteins; 1992-1993; 14(3):151-61. PubMed ID: 1345340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 52.