These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 6093562)

  • 21. Distribution of adenine nucleotides in the perfused rat heart.
    Kohn MC; Achs MJ; Garfinkel D
    Am J Physiol; 1977 May; 232(5):R158-63. PubMed ID: 16501
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of in vivo energy metabolism in the brain of rainbow trout, Salmo gairdneri and bullhead catfish, Ictalurus nebulosus during anoxia.
    DiAngelo CR; Heath AG
    Comp Biochem Physiol B; 1987; 88(1):297-303. PubMed ID: 3677607
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative brain oxygenation and mitochondrial redox activity in turtles and rats.
    Sick TJ; Lutz PL; LaManna JC; Rosenthal M
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Dec; 53(6):1354-9. PubMed ID: 6295991
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidative and glycolytic pathways in rat (newborn and adult) and turtle brain: role during anoxia.
    Xia Y; Jiang C; Haddad GG
    Am J Physiol; 1992 Apr; 262(4 Pt 2):R595-603. PubMed ID: 1314516
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphorylation of the mitochondrial ATP-sensitive potassium channel occurs independently of PKCĪµ in turtle brain.
    Hawrysh PJ; Miles AR; Buck LT
    Comp Biochem Physiol B Biochem Mol Biol; 2016 Oct; 200():44-53. PubMed ID: 27280321
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbohydrate and energy metabolism during the evolution of hypoxic-ischemic brain damage in the immature rat.
    Palmer C; Brucklacher RM; Christensen MA; Vannucci RC
    J Cereb Blood Flow Metab; 1990 Mar; 10(2):227-35. PubMed ID: 2303539
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondrial cytochrome c oxidase and control of energy metabolism: measurements in suspensions of isolated mitochondria.
    Wilson DF; Harrison DK; Vinogradov A
    J Appl Physiol (1985); 2014 Dec; 117(12):1424-30. PubMed ID: 25324517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contribution of tissue acidosis to ischemic injury in the perfused rat heart.
    Williamson JR; Schaffer SW; Ford C; Safer B
    Circulation; 1976 Mar; 53(3 Suppl):I3-14. PubMed ID: 3293
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A simple model of aerobic metabolism: applications to work transitions in muscle.
    Funk CI; Clark A; Connett RJ
    Am J Physiol; 1990 Jun; 258(6 Pt 1):C995-1005. PubMed ID: 2141761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potassium ion homeostasis and mitochondrial redox status of turtle brain during and after ischemia.
    Sick TJ; Chasnoff EP; Rosenthal M
    Am J Physiol; 1985 May; 248(5 Pt 2):R531-40. PubMed ID: 2986469
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitochondrial ATP-synthase activity in cardiomyocytes after aerobic-anaerobic metabolic transition.
    Noll T; Koop A; Piper HM
    Am J Physiol; 1992 May; 262(5 Pt 1):C1297-303. PubMed ID: 1534202
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic effects of cold storage on livers from euthermic and hibernating Columbian ground squirrels.
    Churchill TA; Simpkin S; Wang LC; Green CJ; Williams SR; Busza AL; Fuller BJ
    Cryobiology; 1996 Feb; 33(1):34-40. PubMed ID: 8812083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure-function relationships in feedback regulation of energy fluxes in vivo in health and disease: mitochondrial interactosome.
    Saks V; Guzun R; Timohhina N; Tepp K; Varikmaa M; Monge C; Beraud N; Kaambre T; Kuznetsov A; Kadaja L; Eimre M; Seppet E
    Biochim Biophys Acta; 2010; 1797(6-7):678-97. PubMed ID: 20096261
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellular energy utilization and supply during hypoxia in embryonic cardiac myocytes.
    Budinger GR; Chandel N; Shao ZH; Li CQ; Melmed A; Becker LB; Schumacker PT
    Am J Physiol; 1996 Jan; 270(1 Pt 1):L44-53. PubMed ID: 8772526
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial responses to prolonged anoxia in brain of red-eared slider turtles.
    Pamenter ME; Gomez CR; Richards JG; Milsom WK
    Biol Lett; 2016 Jan; 12(1):20150797. PubMed ID: 26763217
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 31P-NMR measurements of pHi and high-energy phosphates in isolated turtle hearts during anoxia and acidosis.
    Wasser JS; Inman KC; Arendt EA; Lawler RG; Jackson DC
    Am J Physiol; 1990 Sep; 259(3 Pt 2):R521-30. PubMed ID: 2396711
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA
    Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial cytochrome c oxidase: mechanism of action and role in regulating oxidative phosphorylation.
    Wilson DF; Vinogradov SA
    J Appl Physiol (1985); 2014 Dec; 117(12):1431-9. PubMed ID: 25324518
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Criteria of viability in isolated brain preparations.
    Fitzpatrick JH; Gilboe DD
    Isr J Med Sci; 1982 Jan; 18(1):67-73. PubMed ID: 7068345
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Decreases in mitochondrial reactive oxygen species initiate GABA(A) receptor-mediated electrical suppression in anoxia-tolerant turtle neurons.
    Hogg DW; Pamenter ME; Dukoff DJ; Buck LT
    J Physiol; 2015 May; 593(10):2311-26. PubMed ID: 25781154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.