BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 6093696)

  • 1. Amino acid transport in kidney epithelial cell line (MDCK): characteristics of Na+/amino acid symport in membrane vesicles and basolateral localization in cell monolayers.
    Lever JE; Kennedy BG; Vasan R
    Arch Biochem Biophys; 1984 Nov; 234(2):330-40. PubMed ID: 6093696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active amino acid transport in plasma membrane vesicles from Simian virus 40-transformed mouse fibroblasts. Characteristics of electrochemical Na+ gradient-stimulated uptake.
    Lever JE
    J Biol Chem; 1977 Mar; 252(6):1990-7. PubMed ID: 66232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na(+)-dependent transport of alanine and serine by liver plasma-membrane vesicles from rats fed a low-protein or a high-protein diet.
    Bourdel G; Forestier M; Gouhot B
    Biochim Biophys Acta; 1990 Jul; 1026(1):1-12. PubMed ID: 2165806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polarized amino acid transport by an epithelial cell line of renal origin (LLC-PK1). The basolateral systems.
    Rabito CA; Karish MV
    J Biol Chem; 1982 Jun; 257(12):6802-8. PubMed ID: 7085605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na(+)- and H(+)-gradient-dependent transport of alpha-aminoisobutyrate by luminal membrane vesicles from rabbit proximal tubule.
    Jessen H; Vorum H; Jørgensen KE; Sheikh MI
    J Physiol; 1991 May; 436():149-67. PubMed ID: 2061829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of membrane vesicles in transport studies.
    Lever JE
    CRC Crit Rev Biochem; 1980 Jan; 7(3):187-246. PubMed ID: 6243082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of a differentiated transport function in apical membrane vesicles isolated from an established kidney epithelial cell line. Sodium electrochemical potential-mediated active sugar transport.
    Lever JE
    J Biol Chem; 1982 Aug; 257(15):8680-86. PubMed ID: 7096329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polarity of neutral amino acid transport and characterization of a broad specificity transport activity in a kidney epithelial cell line, MDCK.
    Boerner P; Evans-Laying M; U HS; Saier MH
    J Biol Chem; 1986 Oct; 261(30):13957-62. PubMed ID: 3771512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the proton electrochemical gradient in the transepithelial absorption of amino acids by human intestinal Caco-2 cell monolayers.
    Thwaites DT; McEwan GT; Simmons NL
    J Membr Biol; 1995 Jun; 145(3):245-56. PubMed ID: 7563025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acid transport in plasma-membrane vesicles from rat liver. Characterization of L-alanine transport.
    Sips HJ; Van Amelsvoort JM; Van Dam K
    Eur J Biochem; 1980 Apr; 105(2):217-24. PubMed ID: 7379782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maintenance of glucagon-stimulated system A amino acid transport activity in rat liver plasma membrane vesicles.
    Schenerman MA; Kilberg MS
    Biochim Biophys Acta; 1986 Apr; 856(3):428-36. PubMed ID: 3964688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Na+,K+-ATPase activity in MDCK kidney epithelial cell cultures: role of growth state, cyclic AMP, and chemical inducers of dome formation and differentiation.
    Kennedy BG; Lever JE
    J Cell Physiol; 1984 Oct; 121(1):51-63. PubMed ID: 6090479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Na+ in alpha-aminoisobutyric acid uptake by membrane vesicles from mouse fibroblasts transformed by simian virus 40.
    Nishino H; Schiller RM; Parnes JR; Isselbacher KJ
    Proc Natl Acad Sci U S A; 1978 May; 75(5):2329-32. PubMed ID: 79182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The bovine renal epithelial cell line NBL-1 expresses a broad specificity Na(+)-dependent neutral amino acid transport system (System Bo) similar to that in bovine renal brush border membrane vesicles.
    Doyle FA; McGivan JD
    Biochim Biophys Acta; 1992 Feb; 1104(1):55-62. PubMed ID: 1550853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus.
    Heyne RI; de Vrij W; Crielaard W; Konings WN
    J Bacteriol; 1991 Jan; 173(2):791-800. PubMed ID: 1670936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Na+-dependent hexose transport in cultured renal epithelial cells (LLC-PK1).
    Weiss ER; Amsler K; Dawson WD; Cook JS
    Ann N Y Acad Sci; 1985; 456():420-35. PubMed ID: 3004299
    [No Abstract]   [Full Text] [Related]  

  • 17. Membrane polarity of the Na(+)-K+ pump in primary cultures of Xenopus retinal pigment epithelium.
    Defoe DM; Ahmad A; Chen W; Hughes BA
    Exp Eye Res; 1994 Nov; 59(5):587-96. PubMed ID: 9492760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutral amino acid transport by plasma membrane vesicles of the rabbit choroid plexus.
    Ross HJ; Wright EM
    Brain Res; 1984 Mar; 295(1):155-60. PubMed ID: 6713173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na:K pump abundance and function in MDCK cells: effect of low ambient potassium.
    Kumar S; Berg JA; Katz AI
    Ren Physiol Biochem; 1991; 14(1-2):19-27. PubMed ID: 1706102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductive Na+ transport in an epithelial cell line (LLC-PK1) with characteristics of proximal tubular cells.
    Cantiello HF; Scott JA; Rabito CA
    Am J Physiol; 1987 Apr; 252(4 Pt 2):F590-7. PubMed ID: 3031998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.