BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 6093868)

  • 1. Effect of membrane potential and pH gradient on electron transfer in cytochrome oxidase.
    Moroney PM; Scholes TA; Hinkle PC
    Biochemistry; 1984 Oct; 23(21):4991-7. PubMed ID: 6093868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of electron transfer by the electrochemical potential gradient in cytochrome-c oxidase reconstituted into phospholipid vesicles.
    Sarti P; Malatesta F; Antonini G; Vallone B; Brunori M
    J Biol Chem; 1990 Apr; 265(10):5554-60. PubMed ID: 2156821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Independent control of respiration in cytochrome c oxidase vesicles by pH and electrical gradients.
    Gregory L; Ferguson-Miller S
    Biochemistry; 1989 Mar; 28(6):2655-62. PubMed ID: 2543448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of electron transfer in the cytochrome system of mitochondria by pH, transmembrane pH gradient and electrical potential. The cytochromes b-c segment.
    Papa S; Lorusso M; Izzo G; Capuano F
    Biochem J; 1981 Feb; 194(2):395-406. PubMed ID: 7305997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of proteoliposomal cytochrome c oxidase: the partial reactions.
    Nicholls P
    Biochem Cell Biol; 1990 Sep; 68(9):1135-41. PubMed ID: 2175202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of proteoliposomal cytochrome c oxidase: the overall reaction.
    Nicholls P; Cooper CE; Wrigglesworth JM
    Biochem Cell Biol; 1990 Sep; 68(9):1128-34. PubMed ID: 2175201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The proteoliposomal steady state. Effect of size, capacitance and membrane permeability on cytochrome-oxidase-induced ion gradients.
    Wrigglesworth JM; Cooper CE; Sharpe MA; Nicholls P
    Biochem J; 1990 Aug; 270(1):109-18. PubMed ID: 2168698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic uncoupling in proton-pumping cytochrome c oxidase: pH dependence of cytochrome c oxidation in coupled and uncoupled phospholipid vesicles.
    Maison-Peteri B; Malmström BG
    Biochemistry; 1989 Apr; 28(8):3156-60. PubMed ID: 2545250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stopped-flow studies of cytochrome oxidase reconstituted into liposomes: proton pumping and control of activity.
    Brunori M; Antonini G; Colosimo A; Malatesta F; Sarti P; Jones MG; Wilson MT
    J Inorg Biochem; 1985; 23(3-4):373-9. PubMed ID: 2410570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of energy-linked proton translocation in liposome reconstituted bovine cytochrome bc1 complex. Influence of the protonmotive force on the H+/e- stoichiometry.
    Cocco T; Lorusso M; Di Paola M; Minuto M; Papa S
    Eur J Biochem; 1992 Oct; 209(1):475-81. PubMed ID: 1327781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mechanism of respiratory control: studies with proteoliposomes containing cytochrome oxidase and bacteriorhodopsin.
    Miki T; Orii Y; Mukohata Y
    J Biochem; 1987 Jul; 102(1):199-209. PubMed ID: 2822680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane potentials in reconstituted cytochrome c oxidase proteoliposomes determined by butyltriphenyl phosphonium cation distribution.
    Singh AP; Nicholls P
    Arch Biochem Biophys; 1986 Mar; 245(2):436-45. PubMed ID: 3006593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady-state redox behavior of cytochrome c, cytochrome a, and CuA of cytochrome c oxidase in intact rat liver mitochondria.
    Morgan JE; Wikström M
    Biochemistry; 1991 Jan; 30(4):948-58. PubMed ID: 1846562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of drugs with a model membrane protein. Effects of local anesthetics on electron transfer and hydrogen ion uptake in ionophore stimulated cytochrome oxidase proteoliposomes.
    Singer MA
    Biochem Pharmacol; 1983 May; 32(10):1619-25. PubMed ID: 6305365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The steady state behaviour of cytochrome c oxidase in proteoliposomes.
    Nicholls P
    FEBS Lett; 1993 Jul; 327(2):194-8. PubMed ID: 8392952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of triorganotin-mediated anion-hydroxide exchange upon reconstituted cytochrome c oxidase proteoliposomes.
    Singh AP; Nicholls P
    Biochem Cell Biol; 1986 Jul; 64(7):647-55. PubMed ID: 3019371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytochrome c oxidase as an electron-transport-driven proton pump: pH dependence of the reduction levels of the redox centers during turnover.
    Thörnström PE; Brzezinski P; Fredriksson PO; Malmström BG
    Biochemistry; 1988 Jul; 27(15):5441-7. PubMed ID: 2846037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanism of transmembrane delta muH+ generation in mitochondria by cytochrome c oxidase.
    Lorusso M; Capuano F; Boffoli D; Stefanelli R; Papa S
    Biochem J; 1979 Jul; 182(1):133-47. PubMed ID: 40546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protonmotive activity of cytochrome c oxidase: control of oxidoreduction of the heme centers by the protonmotive force in the reconstituted beef heart enzyme.
    Capitanio N; De Nitto E; Villani G; Capitanio G; Papa S
    Biochemistry; 1990 Mar; 29(12):2939-45. PubMed ID: 2159780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of respiration in sonicated cytochrome oxidase proteoliposomes by gated and ungated ionophores.
    Shaughnessy S; Nicholls P
    Biochem Biophys Res Commun; 1985 Apr; 128(2):1025-30. PubMed ID: 2986617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.