These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 6094239)

  • 21. [Activation of energy-independent liver mitochondrial NAD(P)-transhydrogenase by catecholamines, glucagon and cAMP].
    Kulinskiĭ VI; Medvedev AE; Trufanova LV
    Dokl Akad Nauk SSSR; 1982; 264(4):1002-4. PubMed ID: 6286260
    [No Abstract]   [Full Text] [Related]  

  • 22. Enhancement of NAD-linked isocitrate dehydrogenase activity in rat liver by clofibrate feeding.
    Schön HJ; Kremser K; Prager C; Kramar R
    Biochem Pharmacol; 1991 Jun; 41(11):1773-5. PubMed ID: 2043166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Stimulation of mitochondrial oxidative enzymes in acute cooling and its catecholamine mechanisms].
    Kulinskiĭ VI; Medvedev AI; Kuntsevich AK
    Vopr Med Khim; 1986; 32(5):84-8. PubMed ID: 3022485
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive enzymes from rat liver and within intact rat liver mitochondria.
    McCormack JG
    Biochem J; 1985 Nov; 231(3):581-95. PubMed ID: 3000355
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The regeneration of reduced glutathione in rat forebrain mitochondria identifies metabolic pathways providing the NADPH required.
    Vogel R; Wiesinger H; Hamprecht B; Dringen R
    Neurosci Lett; 1999 Nov; 275(2):97-100. PubMed ID: 10568508
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Receptor substances of brain mitochondria sensitive to neuromediators].
    Balakleevskiĭ AI; Viskmont FI
    Fiziol Zh SSSR Im I M Sechenova; 1979 Mar; 65(3):365-71. PubMed ID: 37127
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Regulation of mitochondrial transhydrogenase activity by catecholamines].
    Medvedev AE; Trufanova LV; Kulinskiĭ VI
    Biokhimiia; 1986 Jul; 51(7):1165-73. PubMed ID: 2873844
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The NAD-linked isocitrate dehydrogenase activity in rat-liver mitochondria.
    Hoek JB; Rydström J; Ernster L
    Biochim Biophys Acta; 1973 Jun; 305(3):669-74. PubMed ID: 4147423
    [No Abstract]   [Full Text] [Related]  

  • 29. Aluminum decreases the glutathione regeneration by the inhibition of NADP-isocitrate dehydrogenase in mitochondria.
    Murakami K; Yoshino M
    J Cell Biochem; 2004 Dec; 93(6):1267-71. PubMed ID: 15486972
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The plasma cyclic AMP response to catecholamines as potentiated by phentolamine in rats.
    Kunitada S; Ui M
    Eur J Pharmacol; 1978 May; 49(2):167-76. PubMed ID: 207536
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Kinetic characteristics of NADP-dependent isocitrate dehydrogenases].
    Gulyĭ MF; Shevchenko MI
    Ukr Biokhim Zh; 1973; 45(5):515-23. PubMed ID: 4151434
    [No Abstract]   [Full Text] [Related]  

  • 32. The participation of NADP, the transmembrane potential and the energy-linked NAD(P) transhydrogenase in the process of Ca2+ efflux from rat liver mitochondria.
    Vercesi AE
    Arch Biochem Biophys; 1987 Jan; 252(1):171-8. PubMed ID: 3813533
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Changes in the activities of NAD- and NADP-specific isocitrate dehydrogenases in the brain and liver during the postembryonic development of animals].
    Prokhorova MI; Putilina FE; Eshchenko ND
    Vopr Biokhim Mozga; 1974; 9():211-8. PubMed ID: 4157232
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of adrenergic agents on alpha-amylase release and adenosine 3',5'-monophosphate accumulation in rat parotid tissue slices.
    Butcher FR; Goldman JA; Nemerovski
    Biochim Biophys Acta; 1975 May; 392(1):82-94. PubMed ID: 164957
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Catecholamine and dibutyryl cyclic AMP effects on myosin adenosine triphosphatase in cultured rat heart cells.
    Harary I; Hoover F; Farley B
    Science; 1973 Sep; 181(4104):1061-3. PubMed ID: 4146909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence suggesting that the NADPH/NADP ratio modulates the splitting of the isocitrate flux between the glyoxylic and tricarboxylic acid cycles, in Escherichia coli.
    Bautista J; Satrústegui J; Machado A
    FEBS Lett; 1979 Sep; 105(2):333-6. PubMed ID: 39785
    [No Abstract]   [Full Text] [Related]  

  • 37. The role of nicotinamide-adenine dinucleotide phosphate-dependent malate dehydrogenase and isocitrate dehydrogenase in the supply of reduced nicotinamide-adenine dinucleotide phosphate for steroidogenesis in the superovulated rat ovary.
    Flint AP; Denton RM
    Biochem J; 1970 Mar; 117(1):73-83. PubMed ID: 4393612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The oxidation of tricarboxylic acid cycle intermediates, with particular reference to isocitrate, by intact mitochondria isolated from the liver of the American eel, Anguilla rostrata leSueur.
    Moon TW; Ouellet G
    Arch Biochem Biophys; 1979 Jul; 195(2):438-52. PubMed ID: 475399
    [No Abstract]   [Full Text] [Related]  

  • 39. Defective nicotinamide nucleotide transhydrogenase reaction in hepatic mitochondria of N-(phosphonomethyl)-glycine treated rats.
    Olorunsogo O
    Biochem Pharmacol; 1982 Jun; 31(12):2191-2. PubMed ID: 7115438
    [No Abstract]   [Full Text] [Related]  

  • 40. Cyclic AMP and adrenergic receptor control of rat liver glycogen metabolism.
    Sherline P; Lynch A; Glinsmann WH
    Endocrinology; 1972 Sep; 91(3):680-90. PubMed ID: 4339328
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.