BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 6094409)

  • 1. The role of endogenous opioid peptides in the control of androgen levels in the male nonhuman primate.
    Gilbeau PM; Almirez RG; Holaday JW; Smith CG
    J Androl; 1984; 5(5):339-43. PubMed ID: 6094409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opioid effects on plasma concentrations of luteinizing hormone and prolactin in the adult male rhesus monkey.
    Gilbeau PM; Almirez RG; Holaday JW; Smith CG
    J Clin Endocrinol Metab; 1985 Feb; 60(2):299-305. PubMed ID: 2981242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different types of opioid receptors mediating analgesia induced by morphine, DAMGO, DPDPE, DADLE and beta-endorphin in mice.
    Suh HH; Tseng LF
    Naunyn Schmiedebergs Arch Pharmacol; 1990 Jul; 342(1):67-71. PubMed ID: 1976234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mu-, delta-, kappa- and epsilon-opioid receptor modulation of the hypothalamic-pituitary-adrenocortical (HPA) axis: subchronic tolerance studies of endogenous opioid peptides.
    Iyengar S; Kim HS; Wood PL
    Brain Res; 1987 Dec; 435(1-2):220-6. PubMed ID: 2892574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavioral effects of opioid peptides selective for mu or delta receptors. I. Morphine-like discriminative stimulus effects.
    Locke KW; Holtzman SG
    J Pharmacol Exp Ther; 1986 Sep; 238(3):990-6. PubMed ID: 3018230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of the opiate antagonist naloxone on the electrical activity of identified neurons in the edible snail].
    Romanenko OK; Pivovarov AS; Bakalkin GIa
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1987; (6):50-5. PubMed ID: 3040132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of peripheral mu, delta and kappa opioid receptors in opioid-induced inhibition of gastrointestinal transit in rats.
    Tavani A; Petrillo P; La Regina A; Sbacchi M
    J Pharmacol Exp Ther; 1990 Jul; 254(1):91-7. PubMed ID: 2164103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opioid peptides decrease noradrenaline release and blood pressure in the rabbit at peripheral receptors.
    Szabo B; Hedler L; Ensinger H; Starke K
    Naunyn Schmiedebergs Arch Pharmacol; 1986 Jan; 332(1):50-6. PubMed ID: 3005885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavioral effects of opioid peptides selective for mu or delta receptors. II. Locomotor activity in nondependent and morphine-dependent rats.
    Locke KW; Holtzman SG
    J Pharmacol Exp Ther; 1986 Sep; 238(3):997-1003. PubMed ID: 3018231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous intrathecal opioid analgesia: tolerance and cross-tolerance of mu and delta spinal opioid receptors.
    Russell RD; Leslie JB; Su YF; Watkins WD; Chang KJ
    J Pharmacol Exp Ther; 1987 Jan; 240(1):150-8. PubMed ID: 3027302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of delta receptor mediation of supraspinal opioid analgesia by in vivo protection against the beta-funaltrexamine antagonist effect.
    Sánchez-Blázquez P; Garzón J
    Eur J Pharmacol; 1989 Jan; 159(1):9-23. PubMed ID: 2565240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opiate mechanisms in the central amygdala and gastric stress pathology in rats.
    Ray A; Henke PG; Sullivan RM
    Brain Res; 1988 Feb; 442(1):195-8. PubMed ID: 2834014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The spinal cord as a site of opioid effects on gastrointestinal transit in the mouse.
    Porreca F; Burks TF
    J Pharmacol Exp Ther; 1983 Oct; 227(1):22-7. PubMed ID: 6312019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opioid antagonism of electroshock-induced seizures.
    Puglisi-Allegra S; Castellano C; Csányl V; Dóka A; Oliverio A
    Pharmacol Biochem Behav; 1984 May; 20(5):767-9. PubMed ID: 6330766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central delta-opioid receptor interactions and the inhibition of reflex urinary bladder contractions in the rat.
    Dray A; Nunan L; Wire W
    Br J Pharmacol; 1985 Jul; 85(3):717-26. PubMed ID: 2992671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of the cardiac response to sympathetic nerve stimulation by opioid peptides and its potentiation by morphine and methadone.
    Ledda F; Mantelli L; Corti V; Fantozzi R
    Eur J Pharmacol; 1984 Jul; 102(3-4):443-50. PubMed ID: 6092097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motility effects of opioid peptides in dog intestine.
    Burks TF; Hirning LD; Galligan JJ; Davis TP
    Life Sci; 1982 Nov 15-22; 31(20-21):2237-40. PubMed ID: 6298519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possible regulatory role of dynorphin-(1-13) on narcotic-induced changes in naloxone efficacy.
    Tulunay FC; Jen MF; Chang JK; Loh HH; Lee NM
    Eur J Pharmacol; 1981 Dec; 76(2-3):235-9. PubMed ID: 6277644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endorphins stimulate normal human peripheral blood lymphocyte natural killer activity.
    Kay N; Allen J; Morley JE
    Life Sci; 1984 Jul; 35(1):53-9. PubMed ID: 6204182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional opiate receptor in mouse vas deferens: evidence for a complex interaction.
    Sánchez-Blázquez P; Garzón J; Lee NM
    J Pharmacol Exp Ther; 1983 Sep; 226(3):706-11. PubMed ID: 6310079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.