BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 6094495)

  • 1. Cyclic AMP phosphodiesterase in Salmonella typhimurium: characteristics and physiological function.
    Botsford JL
    J Bacteriol; 1984 Nov; 160(2):826-30. PubMed ID: 6094495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutants of Serratia marcescens lacking cyclic nucleotide phosphodiesterase activity and requiring cyclic 3',5'-AMP for the utilization of various carbohydrates.
    Winkler U; Scholle H; Bohne L
    Arch Microbiol; 1975 Jun; 104(2):189-96. PubMed ID: 168832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic 3', 5'-adenosine monophosphate phosphodiesterase mutants of Salmonella typhimurium.
    Alper MD; Ames BN
    J Bacteriol; 1975 Jun; 122(3):1081-90. PubMed ID: 168178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The PDE1-encoded low-affinity phosphodiesterase in the yeast Saccharomyces cerevisiae has a specific function in controlling agonist-induced cAMP signaling.
    Ma P; Wera S; Van Dijck P; Thevelein JM
    Mol Biol Cell; 1999 Jan; 10(1):91-104. PubMed ID: 9880329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 3',5' cyclic AMP (cAMP) phosphodiesterase modulates cAMP levels and optimizes competence in Haemophilus influenzae Rd.
    Macfadyen LP; Ma C; Redfield RJ
    J Bacteriol; 1998 Sep; 180(17):4401-5. PubMed ID: 9721275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of crp mutations on adenosine 3',5'-monophosphate metabolism in Salmonella typhimurium.
    Rephaeli AW; Saier MH
    J Bacteriol; 1976 Jul; 127(1):120-7. PubMed ID: 179973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a cyclic nucleotide phosphodiesterase-deficient mutant in yeast.
    Uno I; Matsumoto K; Ishikawa T
    J Biol Chem; 1983 Mar; 258(6):3539-42. PubMed ID: 6300049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Schizosaccharomyces pombe pde1/cgs2 gene encodes a cyclic AMP phosphodiesterase.
    Matviw H; Li J; Young D
    Biochem Biophys Res Commun; 1993 Jul; 194(1):79-82. PubMed ID: 8392846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dunce mutants of Drosophila melanogaster: mutants defective in the cyclic AMP phosphodiesterase enzyme system.
    Davis RL; Kiger JA
    J Cell Biol; 1981 Jul; 90(1):101-7. PubMed ID: 6265472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of cyclic AMP levels in Arthrobacter crystallopoietes and a morphogenetic mutant.
    Hamilton RW; Kolenbrander PE
    J Bacteriol; 1978 Jun; 134(3):1064-73. PubMed ID: 207674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular cyclic AMP concentration is decreased in Salmonella typhimurium fur mutants.
    Campoy S; Jara M; Busquets N; de Rozas AMP; Badiola I; Barbé J
    Microbiology (Reading); 2002 Apr; 148(Pt 4):1039-1048. PubMed ID: 11932449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. cAMP and regulation of carbohydrate metabolism.
    Botsford JL
    Basic Life Sci; 1981; 18():315-34. PubMed ID: 6268054
    [No Abstract]   [Full Text] [Related]  

  • 13. CpdA is involved in amino acid metabolism in Shewanella oneidensis MR-1.
    Kasai T; Kouzuma A; Watanabe K
    Biosci Biotechnol Biochem; 2018 Jan; 82(1):166-172. PubMed ID: 29235426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective up-regulation of phosphodiesterase-4 cyclic adenosine 3',5'-monophosphate (cAMP)-specific phosphodiesterase variants by elevated cAMP content in human myometrial cells in culture.
    Méhats C; Tanguy G; Dallot E; Robert B; Rebourcet R; Ferré F; Leroy MJ
    Endocrinology; 1999 Jul; 140(7):3228-37. PubMed ID: 10385419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of overlapping but distinct cAMP and cGMP interaction sites with cyclic nucleotide phosphodiesterase 3A by site-directed mutagenesis and molecular modeling based on crystalline PDE4B.
    Zhang W; Ke H; Tretiakova AP; Jameson B; Colman RW
    Protein Sci; 2001 Aug; 10(8):1481-9. PubMed ID: 11468344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissimilar cyclic nucleotide phosphodiesterase activities in subcellular fractions from normal and SV40-transformed WI-38 fibroblasts.
    Nemecek GM; Butcher RW
    J Cyclic Nucleotide Res; 1979 Dec; 5(6):449-61. PubMed ID: 94064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Rv0805 gene from Mycobacterium tuberculosis encodes a 3',5'-cyclic nucleotide phosphodiesterase: biochemical and mutational analysis.
    Shenoy AR; Sreenath N; Podobnik M; Kovacevic M; Visweswariah SS
    Biochemistry; 2005 Dec; 44(48):15695-704. PubMed ID: 16313172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of Monascus yellow pigments production by activating the cAMP signalling pathway in Monascus purpureus HJ11.
    Liu J; Du Y; Ma H; Pei X; Li M
    Microb Cell Fact; 2020 Dec; 19(1):224. PubMed ID: 33287814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic adenosine 3',5'-monophosphate levels and activities of adenylate cyclase and cyclic adenosine 3',5'-monophosphate phosphodiesterase in Pseudomonas and Bacteroides.
    Siegel LS; Hylemon PB; Phibbs PV
    J Bacteriol; 1977 Jan; 129(1):87-96. PubMed ID: 187575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of 8-substituted analogs of cyclic adenosine 3',5'-monophosphate on in vivo and in vitro syntheses of beta-galactosidase in Escherichia coli.
    Ito T; Yokota T; Sasaki Y; Suzuki N; Sowa T
    J Bacteriol; 1979 Jun; 138(3):671-7. PubMed ID: 222725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.