BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 6094600)

  • 1. Beta adrenergic receptor repopulation of C6 glioma cells after irreversible blockade and down regulation.
    Homburger V; Pantaloni C; Lucas M; Gozlan H; Bockaert J
    J Cell Physiol; 1984 Dec; 121(3):589-97. PubMed ID: 6094600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turnover of beta 1- and beta 2-adrenergic receptors after down-regulation or irreversible blockade.
    Neve KA; Molinoff PB
    Mol Pharmacol; 1986 Aug; 30(2):104-11. PubMed ID: 3016496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Desensitization of catecholamine-stimulated adenylate cyclase and down-regulation of beta-adrenergic receptors in rat glioma C6 cells. Role of cyclic AMP and protein synthesis.
    Zaremba TG; Fishman PH
    Mol Pharmacol; 1984 Sep; 26(2):206-13. PubMed ID: 6207420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Irreversible blockade of beta-adrenergic receptors with a bromoacetyl derivative of pindolol.
    Homburger V; Gozlan H; Bouhelal R; Lucas M; Bockaert J
    Naunyn Schmiedebergs Arch Pharmacol; 1985 Jan; 328(3):279-87. PubMed ID: 2858822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Desensitization and resensitization of beta-adrenergic receptors in a smooth muscle cell line.
    Scarpace PJ; Baresi LA; Sanford DA; Abrass IB
    Mol Pharmacol; 1985 Dec; 28(6):495-501. PubMed ID: 2867463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agonist-mediated regulation of alpha 1- and beta 2-adrenergic receptor metabolism in a muscle cell line, BC3H-1.
    Hughes RJ; Insel PA
    Mol Pharmacol; 1986 Jun; 29(6):521-30. PubMed ID: 3012317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Receptor-associated changes of the catecholamine-sensitive adenylate cyclase in glioma cells doubly transformed with Moloney sarcoma virus.
    Higashida H; Miki N; Tanaka T; Kato K; Nakano T; Nagatsu T; Kano-Tanaka K
    J Cell Physiol; 1982 Feb; 110(2):107-13. PubMed ID: 6279681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective regulation of beta-1 and beta-2 adrenergic receptors by atypical agonists.
    Neve KA; Barrett DA; Molinoff PB
    J Pharmacol Exp Ther; 1985 Dec; 235(3):657-64. PubMed ID: 2867205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of a density shift method to assess beta-adrenergic receptor synthesis during recovery from catecholamine-induced down-regulation in human astrocytoma cells.
    Waldo GL; Doss RC; Perkins JP; Harden TK
    Mol Pharmacol; 1984 Nov; 26(3):424-9. PubMed ID: 6092895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turnover of adrenergic receptors under normal and desensitized conditions.
    Sladeczek F; Homburger V; Mauger JP; Gozlan H; Lucas M; Bouhelal R; Pantaloni C; Bockaert J
    J Recept Res; 1984; 4(1-6):69-89. PubMed ID: 6098677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of tunicamycin on the expression of beta-adrenergic receptors in human astrocytoma cells during growth and recovery from agonist-induced down-regulation.
    Doss RC; Kramarcy NR; Harden TK; Perkins JP
    Mol Pharmacol; 1985 May; 27(5):507-16. PubMed ID: 2985949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of beta-adrenergic receptors in synchronous and asynchronous S49 lymphoma cells. I. Receptor metabolism after irreversible blockade of receptors and in cells traversing the cell division cycle.
    Mahan LC; Insel PA
    Mol Pharmacol; 1986 Jan; 29(1):7-15. PubMed ID: 2868411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Down-regulation of gonadotropin and beta-adrenergic receptors by hormones and cyclic AMP.
    Fishman PH; Rebois RV; Zaremba T
    J Cell Biochem; 1985; 27(3):231-9. PubMed ID: 2985637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of adrenergic receptors and adenylate cyclase.
    Bouhelal R; Mermet-Bouvier R; Mauger JP; Sladeczek F; Homburger V; Bockaert J
    J Recept Res; 1987; 7(1-4):299-320. PubMed ID: 3040979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+ inhibition of beta-adrenergic receptor- and forskolin-stimulated cAMP accumulation in C6-2B rat glioma cells is independent of protein kinase C.
    Debernardi MA; Munshi R; Brooker G
    Mol Pharmacol; 1993 Mar; 43(3):451-8. PubMed ID: 8383803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a bromoacetylated derivative of pindolol as a high affinity, irreversible beta adrenergic antagonist in cultured cells.
    Jasper JR; Motulsky HJ; Insel PA
    J Pharmacol Exp Ther; 1988 Mar; 244(3):820-4. PubMed ID: 2908047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new approach to determine rates of receptor appearance and disappearance in vivo. Application to agonist-mediated down-regulation of rat renal cortical beta 1- and beta 2-adrenergic receptors.
    Snavely MD; Ziegler MG; Insel PA
    Mol Pharmacol; 1985 Jan; 27(1):19-26. PubMed ID: 2981399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Desensitization of adenylate cyclase and down regulation of beta adrenergic receptors after in vivo administration of beta agonist.
    Scarpace PJ; Abrass IB
    J Pharmacol Exp Ther; 1982 Nov; 223(2):327-31. PubMed ID: 6127402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of (-)-[3H]dihydroalprenolol to study beta adrenergic receptor-adenylate cyclase coupling in C6 glioma cells: role of 5'-guanylylimidodiphosphate.
    Lucas M; Bockaert J
    Mol Pharmacol; 1977 Mar; 13(2):314-29. PubMed ID: 192993
    [No Abstract]   [Full Text] [Related]  

  • 20. [Effects of tubulin on beta adrenergic receptor linked to adenylyl cyclase system].
    Watanabe M; Saito T; Rasenick MM
    Yakubutsu Seishin Kodo; 1993 Feb; 13(1):19-32. PubMed ID: 8391193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.