BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 6094600)

  • 21. Growth of C6 glioma cells in serum-containing medium decreases beta-adrenergic receptor number.
    Dibner MD; Insel PA
    J Cell Physiol; 1981 Nov; 109(2):309-15. PubMed ID: 6271796
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for cell type dependent mechanisms in agonist-induced down-regulation of beta-adrenoceptors.
    Rademaker B; Kramer K; Bast A; Timmerman H
    Res Commun Chem Pathol Pharmacol; 1990 Mar; 67(3):321-36. PubMed ID: 1971452
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of agonist-induced beta-adrenergic receptor-specific desensitization in C62B glioma cells.
    Frederich RC; Waldo GL; Harden TK; Perkins JP
    J Cyclic Nucleotide Protein Phosphor Res; 1983; 9(2):103-18. PubMed ID: 6315795
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of C6-10A glioma cells highly responsive to beta-adrenergic receptor agonist-induced NGF synthesis/secretion.
    Fukumoto H; Kakihana M; Suno M
    Glia; 1994 Oct; 12(2):151-60. PubMed ID: 7532621
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interactions of agonists and antagonists with beta-adrenergic receptors on intact L6 muscle cells.
    Pittman RN; Molinoff PB
    J Cyclic Nucleotide Res; 1980; 6(6):421-35. PubMed ID: 6260844
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stimulation of nerve growth factor mRNA content in C6 glioma cells by a beta-adrenergic receptor and by cyclic AMP.
    Schwartz JP
    Glia; 1988; 1(4):282-5. PubMed ID: 2853697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Altered genetic response to beta-adrenergic receptor activation in late passage C6 glioma cells.
    Gubits RM; Yu H; Casey G; Munell F; Vitek MP
    J Neurosci Res; 1992 Oct; 33(2):297-305. PubMed ID: 1333540
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of downregulation of beta-adrenergic receptors: perspective on the role of beta-adrenergic receptors in congestive heart failure.
    Frey MJ; Molinoff PB
    J Cardiovasc Pharmacol; 1989; 14 Suppl 5():S13-8. PubMed ID: 2478805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro study of alpha 2-adrenoceptor turnover and metabolism using the adenocarcinoma cell line HT29.
    Paris H; Taouis M; Galitzky J
    Mol Pharmacol; 1987 Nov; 32(5):646-54. PubMed ID: 2891026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uncoupling of the beta-adrenergic receptor as a mechanism of in vitro neutrophil desensitization.
    Galant SP; Britt S
    J Lab Clin Med; 1984 Feb; 103(2):322-32. PubMed ID: 6319518
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isoproterenol-initiated beta-adrenergic receptor diacytosis in cultured cells.
    Kurz JB; Perkins JP
    Mol Pharmacol; 1992 Feb; 41(2):375-81. PubMed ID: 1347147
    [TBL] [Abstract][Full Text] [Related]  

  • 32. (-)-[125I]-iodopindolol, a new highly selective radioiodinated beta-adrenergic receptor antagonist: measurement of beta-receptors on intact rat astrocytoma cells.
    Barovsky K; Brooker G
    J Cyclic Nucleotide Res; 1980; 6(4):297-307. PubMed ID: 6110683
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catecholamine-induced desensitization of adenylate cyclase in rat glioma C6 cells. Evidence for a specific uncoupling of beta-adrenergic receptors from a functional regulatory component of adenylate cyclase.
    Fishman PH; Mallorga P; Tallman JF
    Mol Pharmacol; 1981 Sep; 20(2):310-8. PubMed ID: 6272090
    [No Abstract]   [Full Text] [Related]  

  • 34. Tumor necrosis factor-alpha mediates the proliferation of rat C6 glioma cells via beta-adrenergic receptors.
    Lung HL; Shan SW; Tsang D; Leung KN
    J Neuroimmunol; 2005 Sep; 166(1-2):102-12. PubMed ID: 16005083
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cyclic AMP formation in C6 glioma cells: effect of PACAP and VIP in early and late passages.
    Sokolowska P; Nowak JZ
    Ann N Y Acad Sci; 2006 Jul; 1070():566-9. PubMed ID: 16888226
    [TBL] [Abstract][Full Text] [Related]  

  • 36. beta Adrenergic receptor-mediated regulation of cyclic nucleotide phosphodiesterase in C6 glioma cells: vinblastine blockade of isoproterenol induction.
    Schwartz JP; Costa E
    J Pharmacol Exp Ther; 1980 Mar; 212(3):569-72. PubMed ID: 6244389
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reappearance of beta-adrenergic receptors after isoproterenol treatment in intact C6-cells.
    Hertel C; Staehelin M
    J Cell Biol; 1983 Nov; 97(5 Pt 1):1538-43. PubMed ID: 6138360
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Desensitization of the mammalian beta-adrenergic receptor: analysis of receptor redistribution on nonlinear sucrose gradients.
    Kassis S; Sullivan M
    J Cyclic Nucleotide Protein Phosphor Res; 1986; 11(1):35-46. PubMed ID: 3009570
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adenylate cyclase and beta adrenergic receptor development in the mouse heart.
    Chen FC; Yamamura HI; Roeske WR
    J Pharmacol Exp Ther; 1982 Jul; 222(1):7-13. PubMed ID: 6283073
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of beta-adrenergic receptor mRNA in rat C6 glioma cells is sensitive to the state of microtubule assembly.
    Hough C; Fukamauchi F; Chuang DM
    J Neurochem; 1994 Feb; 62(2):421-30. PubMed ID: 7905023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.