These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 6094604)

  • 1. Comparison of methods for separating polycyclic aromatic hydrocarbons by high-performance thin-layer chromatography.
    Poole CF; Butler HT; Coddens ME; Khatib S; Vandervennet R
    J Chromatogr; 1984 Oct; 302():149-58. PubMed ID: 6094604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Method for identifying and determining polycyclic aromatic hydrocarbons in foods, soil and drinking water].
    Fritz W
    Nahrung; 1979; 23(1):63-81. PubMed ID: 471026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear modeling of the soil-water partition coefficient normalized to organic carbon content by reversed-phase thin-layer chromatography.
    Andrić F; Šegan S; Dramićanin A; Majstorović H; Milojković-Opsenica D
    J Chromatogr A; 2016 Aug; 1458():136-44. PubMed ID: 27378251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of covalently bound tetraphenylporphyrin-silica gel stationary phases for reversed-phase and anion-exchange chromatography.
    Kibbey CE; Meyerhoff ME
    Anal Chem; 1993 Sep; 65(17):2189-96. PubMed ID: 8238924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of chromatography on thin layers impregnated with organic stationary phases. Chromatographic separation of nitrophenols.
    Gasparic J; Skutil J
    J Chromatogr; 1991 Oct; 558(2):415-22. PubMed ID: 1665846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarity-adjustable reversed phase ultrathin-layer chromatography.
    Hall JZ; Taschuk MT; Brett MJ
    J Chromatogr A; 2012 Nov; 1266():168-74. PubMed ID: 23116804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape-selective separation of polycyclic aromatic hydrocarbons by reversed-phase liquid chromatography on tetraphenylporphyrin-based stationary phases.
    Kibbey CE; Meyerhoff ME
    J Chromatogr; 1993 Jul; 641(1):49-55. PubMed ID: 8349741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenyl-type and C1 stationary phases for environmentally friendlier chromatography.
    Stevenson PG; Soliven A; Dennis GR; Shalliker RA
    J Sep Sci; 2009 Nov; 32(22):3880-9. PubMed ID: 19882627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional thin-layer chromatography of Dns-amino acids on reversed-phase silica gel.
    Macek K; Deyl Z; Smrz M
    J Chromatogr; 1980 May; 193(3):421-6. PubMed ID: 6247357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HPLC retention behaviors of poly-aromatic-hydrocarbones on Cu(II)-octabromotetrakis(4-carboxyphenyl)porphine derivatives-immobilized aminopropyl silica gels in polar and non-polar eluents.
    Mifune M; Kawata K; Tanaka K; Kitamura Y; Tsukamoto I; Saito M; Haginaka J; Saito Y
    Chem Pharm Bull (Tokyo); 2006 Jan; 54(1):94-8. PubMed ID: 16394557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional high-performance thin-layer chromatography of tryptic bovine albumin digest using normal- and reverse-phase systems with silanized silica stationary phase.
    Gwarda RŁ; Dzido TH
    J Chromatogr A; 2013 Oct; 1312():152-4. PubMed ID: 24034973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Argentation liquid chromatography of polynuclear aromatic hydrocarbons on a silver(I)-loaded mercaptopropyl silica gel stationary phase.
    Dunn JA; Holland KB; Jezorek JR
    J Chromatogr; 1987 May; 394(2):375-81. PubMed ID: 3040789
    [No Abstract]   [Full Text] [Related]  

  • 13. Silica-based nanofibers for electrospun ultra-thin layer chromatography.
    Newsome TE; Olesik SV
    J Chromatogr A; 2014 Oct; 1364():261-70. PubMed ID: 25218634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retention behavior of large polycyclic aromatics in bonded-phase high-performance liquid chromatography.
    Fetzer JC; Biggs WR
    J Chromatogr; 1987 Jan; 386():87-101. PubMed ID: 3558618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly-porous diatom biosilica stationary phase for thin-layer chromatography.
    Kraai JA; Rorrer GL; Wang AX
    J Chromatogr A; 2019 Apr; 1591():162-170. PubMed ID: 30683526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multivariate assessment of lipophilicity scales-computational and reversed phase thin-layer chromatographic indices.
    Andrić F; Bajusz D; Rácz A; Šegan S; Héberger K
    J Pharm Biomed Anal; 2016 Aug; 127():81-93. PubMed ID: 27155738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel octadecylsilane functionalized graphene oxide/silica composite stationary phase for high performance liquid chromatography.
    Liang X; Wang S; Liu S; Liu X; Jiang S
    J Sep Sci; 2012 Aug; 35(16):2003-9. PubMed ID: 22899638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Argentation chromatography for the separation of polycyclic aromatic compounds according to ring number.
    Nocun M; Andersson JT
    J Chromatogr A; 2012 Jan; 1219():47-53. PubMed ID: 22153206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved reversed-phase high-performance liquid chromatographic separation of 32P-labelled nucleoside 3',5'-bisphosphate adducts of polycyclic aromatic hydrocarbons.
    Pfau W; Phillips DH
    J Chromatogr; 1991 Sep; 570(1):65-76. PubMed ID: 1797837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward the Understanding of Micro-TLC Behavior of Various Dyes on Silica and Cellulose Stationary Phases Using A Data Mining Approach.
    Pereira JC; Marques JMC; Włodarczyk E; Fenert B; Zarzycki PK
    J AOAC Int; 2018 Sep; 101(5):1437-1447. PubMed ID: 29724263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.