These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 6095060)
1. The absence of a human-specific ribosomal DNA transcription factor leads to nucleolar dominance in mouse greater than human hybrid cells. Miesfeld R; Sollner-Webb B; Croce C; Arnheim N Mol Cell Biol; 1984 Jul; 4(7):1306-12. PubMed ID: 6095060 [TBL] [Abstract][Full Text] [Related]
2. On the mechanism of nucleolar dominance in mouse-human somatic cell hybrids. Onishi T; Berglund C; Reeder RH Proc Natl Acad Sci U S A; 1984 Jan; 81(2):484-7. PubMed ID: 6582504 [TBL] [Abstract][Full Text] [Related]
3. RNA polymerase I-dependent selective transcription of yeast ribosomal DNA. Identification of a new cellular ribosomal RNA precursor. Swanson ME; Holland MJ J Biol Chem; 1983 Mar; 258(5):3242-50. PubMed ID: 6298229 [TBL] [Abstract][Full Text] [Related]
4. Specific transcription of mouse ribosomal DNA in a cell-free system that mimics control in vivo. Grummt I Proc Natl Acad Sci U S A; 1981 Feb; 78(2):727-31. PubMed ID: 6262766 [TBL] [Abstract][Full Text] [Related]
5. Species-specific rDNA transcription is due to promoter-specific binding factors. Miesfeld R; Arnheim N Mol Cell Biol; 1984 Feb; 4(2):221-7. PubMed ID: 6700588 [TBL] [Abstract][Full Text] [Related]
6. Specific transcription of Saccharomyces cerevisiae 35 S rDNA by RNA polymerase I in vitro. Riggs DL; Nomura M J Biol Chem; 1990 May; 265(13):7596-603. PubMed ID: 2185253 [TBL] [Abstract][Full Text] [Related]
7. The mechanism of nucleolar dominance in Xenopus hybrids. Reeder RH; Roan JG Cell; 1984 Aug; 38(1):38-44. PubMed ID: 6467369 [TBL] [Abstract][Full Text] [Related]
8. Species specificity of ribosomal gene transcription: a factor associated with human RNA polymerase I prevents transcription of mouse rDNA. Eberhard D; Grummt I DNA Cell Biol; 1996 Feb; 15(2):167-73. PubMed ID: 8634144 [TBL] [Abstract][Full Text] [Related]
9. Mouse and frog violate the paradigm of species-specific transcription of ribosomal RNA genes. Culotta VC; Wilkinson JK; Sollner-Webb B Proc Natl Acad Sci U S A; 1987 Nov; 84(21):7498-502. PubMed ID: 3478707 [TBL] [Abstract][Full Text] [Related]
10. Involvement of in situ conformation of ribosomal genes and selective distribution of upstream binding factor in rRNA transcription. Junéra HR; Masson C; Géraud G; Suja J; Hernandez-Verdun D Mol Biol Cell; 1997 Jan; 8(1):145-56. PubMed ID: 9017602 [TBL] [Abstract][Full Text] [Related]
11. Dual role of the nucleolar transcription factor UBF: trans-activator and antirepressor. Kuhn A; Grummt I Proc Natl Acad Sci U S A; 1992 Aug; 89(16):7340-4. PubMed ID: 1502143 [TBL] [Abstract][Full Text] [Related]
12. Rat ribosomal RNA gene can utilize primate RNA polymerase I transcription machinery: lack of absolute species specificity in rDNA transcription. Ghosh AK; Niu H; Jacob ST Biochem Biophys Res Commun; 1996 Aug; 225(3):890-5. PubMed ID: 8780707 [TBL] [Abstract][Full Text] [Related]
13. A unique enhancer boundary complex on the mouse ribosomal RNA genes persists after loss of Rrn3 or UBF and the inactivation of RNA polymerase I transcription. Herdman C; Mars JC; Stefanovsky VY; Tremblay MG; Sabourin-Felix M; Lindsay H; Robinson MD; Moss T PLoS Genet; 2017 Jul; 13(7):e1006899. PubMed ID: 28715449 [TBL] [Abstract][Full Text] [Related]
14. RNA polymerase I associated factor 53 binds to the nucleolar transcription factor UBF and functions in specific rDNA transcription. Hanada K; Song CZ; Yamamoto K; Yano K; Maeda Y; Yamaguchi K; Muramatsu M EMBO J; 1996 May; 15(9):2217-26. PubMed ID: 8641287 [TBL] [Abstract][Full Text] [Related]
15. Transcription of mouse rDNA and associated formation of the nucleolus organizer region after gene transfer and amplification in Chinese hamster cells. Dhar VN; Miller DA; Miller OJ Mol Cell Biol; 1985 Nov; 5(11):2943-50. PubMed ID: 3018488 [TBL] [Abstract][Full Text] [Related]
16. Glucocorticoid inhibition of initiation of transcription of the DNA encoding rRNA (rDNA) in lymphosarcoma P1798 cells. Cavanaugh AH; Gokal PK; Lawther RP; Thompson EA Proc Natl Acad Sci U S A; 1984 Feb; 81(3):718-21. PubMed ID: 6322167 [TBL] [Abstract][Full Text] [Related]
17. Identification of the in vivo and in vitro origin of transcription in human rDNA. Miesfeld R; Arnheim N Nucleic Acids Res; 1982 Jul; 10(13):3933-49. PubMed ID: 6287426 [TBL] [Abstract][Full Text] [Related]
18. Association of yeast RNA polymerase I with a nucleolar substructure active in rRNA synthesis and processing. Fath S; Milkereit P; Podtelejnikov AV; Bischler N; Schultz P; Bier M; Mann M; Tschochner H J Cell Biol; 2000 May; 149(3):575-90. PubMed ID: 10791972 [TBL] [Abstract][Full Text] [Related]
19. Isolation, fractionation and reconstitution of a nuclear extract capable of transcribing ribosomal DNA. Haglund RE; Rothblum LI Mol Cell Biochem; 1987 Jan; 73(1):11-20. PubMed ID: 3807897 [TBL] [Abstract][Full Text] [Related]
20. Che-1/AATF binds to RNA polymerase I machinery and sustains ribosomal RNA gene transcription. Sorino C; Catena V; Bruno T; De Nicola F; Scalera S; Bossi G; Fabretti F; Mano M; De Smaele E; Fanciulli M; Iezzi S Nucleic Acids Res; 2020 Jun; 48(11):5891-5906. PubMed ID: 32421830 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]