BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 6095808)

  • 1. Electrostatic screening stimulates rate-limiting steps in mitochondrial electron transport.
    Møller IM; Kay CJ; Palmer JM
    Biochem J; 1984 Nov; 223(3):761-7. PubMed ID: 6095808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge screening by cations affects the conformation of the mitochondrial inner membrane. A study of exogenous MAD(P)H oxidation in plant mitochondria.
    Møller IM; Palmer JM
    Biochem J; 1981 Jun; 195(3):583-8. PubMed ID: 7316973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The regulation of exogenous NAD(P)H oxidation in spinach (Spinacia oleracea) leaf mitochondria by pH and cations.
    Edman K; Ericson I; Møller IM
    Biochem J; 1985 Dec; 232(2):471-7. PubMed ID: 3937519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the site where the electron transfer chain of plant mitochondria is stimulated by electrostatic charge screening.
    Krab K; Wagner MJ; Wagner AM; Moller IM
    Eur J Biochem; 2000 Feb; 267(3):869-76. PubMed ID: 10651825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction.
    Berridge MV; Tan AS
    Arch Biochem Biophys; 1993 Jun; 303(2):474-82. PubMed ID: 8390225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of malate oxidation in plant mitochondria. Response to rotenone and exogenous NAD+.
    Palmer JM; Schwitzguébel JP; Møller IM
    Biochem J; 1982 Dec; 208(3):703-11. PubMed ID: 6819864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding and screening by cations and the effect on exogenous NAD(P)H oxidation in Neurospora crassa mitochondria.
    Møller IM; Schwitzguébel JP; Palmer JM
    Eur J Biochem; 1982 Mar; 123(1):81-8. PubMed ID: 6461553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles.
    Fato R; Estornell E; Di Bernardo S; Pallotti F; Parenti Castelli G; Lenaz G
    Biochemistry; 1996 Feb; 35(8):2705-16. PubMed ID: 8611577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioflavonoid effects on the mitochondrial respiratory electron transport chain and cytochrome c redox state.
    Moini H; Arroyo A; Vaya J; Packer L
    Redox Rep; 1999; 4(1-2):35-41. PubMed ID: 10714274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlortetracycline and the transmembrane potential of the inner membrane of plant mitochondria.
    Møller IM; Kay CJ; Palmer JM
    Biochem J; 1986 Aug; 237(3):765-71. PubMed ID: 3800917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The stimulation of exogenous NADH oxidation in Jerusalem artichoke mitochondria by screening of charges on the membranes.
    Johnston SP; Møller IM; Palmer JM
    FEBS Lett; 1979 Dec; 108(1):28-32. PubMed ID: 230083
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of dichlorophenolindophenol, dichlorophenolindophenol-sulfonate, and cytochrome c on redox capacity and simultaneous net H+/K+ fluxes in aeroponically grown seedling roots of sunflower (Helianthus annuus L.): new evidence for a plasma membrane CN(-)-resistant redox chain.
    Garrido I; Espinosa F; Alvarez-Tinaut MC
    Protoplasma; 2001; 217(1-3):56-64. PubMed ID: 11732339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Oxidation of malate, NADH and glycine in C3 and C4 plant mitochondria].
    Neuburger M; Douce R
    C R Acad Hebd Seances Acad Sci D; 1977 Oct; 285(8):881-4. PubMed ID: 199373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A specific role for Ca2+ in the oxidation of exogenous NADH by Jerusalem-artichoke (Helianthus tuberosus) mitochondria.
    Møller IM; Johnston SP; Palmer JM
    Biochem J; 1981 Feb; 194(2):487-95. PubMed ID: 6796061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The activation of non-phosphorylating electron transport by adenine nucleotides in Jerusalem-artichoke (Helianthus tuberosus) mitochondria.
    Sotthibandhu R; Palmer JM
    Biochem J; 1975 Dec; 152(3):637-45. PubMed ID: 1227506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Failure of exogenous NADH and cytochrome c to support energy-dependent swelling of mitochondria.
    Lemeshko VV
    Arch Biochem Biophys; 2001 Apr; 388(1):60-6. PubMed ID: 11361141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of External NAD(P)H by Jerusalem Artichoke (Helianthus tuberosus) Mitochondria : A Kinetic and Inhibitor Study.
    Rugolo M; Zannoni D
    Plant Physiol; 1992 Jul; 99(3):1037-43. PubMed ID: 16668968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porin and cytochrome oxidase containing contact sites involved in the oxidation of cytosolic NADH.
    La Piana G; Marzulli D; Gorgoglione V; Lofrumento NE
    Arch Biochem Biophys; 2005 Apr; 436(1):91-100. PubMed ID: 15752713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The H+/e- stoicheiometry of respiration-linked proton translocation in the cytochrome system of mitochondria.
    Papa S; Guerrieri F; Lorusso M; Izzo G; Boffoli D; Capuano F; Capitanio N; Altamura N
    Biochem J; 1980 Oct; 192(1):203-18. PubMed ID: 6272694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of NADH oxidation by atractylate in Jerusalem artichoke (Helianthus tuberosus) mitochondria.
    Sotthibandhu R; Palmer JM
    FEBS Lett; 1978 May; 89(1):165-8. PubMed ID: 207566
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.