BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 6095856)

  • 1. Decreased adenosine cyclic 3',5'-monophosphate phosphodiesterase activity in rat brain following triethyltin intoxication.
    Macovschi O; Prigent AF; Nemoz G; Pageaux JF; Pacheco H
    Biochem Pharmacol; 1984 Nov; 33(22):3603-8. PubMed ID: 6095856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of an extract of Ginkgo biloba on the 3',5'-cyclic AMP phosphodiesterase activity of the brain of normal and triethyltin-intoxicated rats.
    Macovschi O; Prigent AF; Nemoz G; Pacheco H
    J Neurochem; 1987 Jul; 49(1):107-14. PubMed ID: 3035090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of ATPase activities of brain and liver homogenates by triethyltin (TET).
    Jacobs KS; Lemasters JJ; Reiter LW
    Dev Toxicol Environ Sci; 1983; 11():517-20. PubMed ID: 6234157
    [No Abstract]   [Full Text] [Related]  

  • 4. Identification and characterization of both the cytosolic and particulate forms of cyclic GMP-stimulated cyclic AMP phosphodiesterase from rat liver.
    Pyne NJ; Cooper ME; Houslay MD
    Biochem J; 1986 Mar; 234(2):325-34. PubMed ID: 3013156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute in vivo stimulation of low-Km cyclic AMP phosphodiesterase activity by insulin in rat-liver Golgi fractions.
    Benelli C; Desbuquois B; De Gallé B
    Eur J Biochem; 1986 Apr; 156(1):211-20. PubMed ID: 3007144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Implication of lipid peroxidation in triethyltin poisoning in the rat].
    Boulieu R; Munoz JF; Macovschi O; Pacheco H
    C R Seances Soc Biol Fil; 1988; 182(2):196-201. PubMed ID: 2973827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation of cell-free brain cyclic nucleotide phosphodiesterase activities to cyclic AMP decay in intact brain slices.
    Whalin ME; Garrett RL; Thompson WJ; Strada SJ
    Second Messengers Phosphoproteins; 1988-1989; 12(5-6):311-25. PubMed ID: 2856115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased methylation of chloroform extractable products and CTP: cholinephosphate cytidylyltransferase in brain membrane preparations from triethyltin-intoxicated rats.
    Mages F; Macovschi O; Prigent AF; Fonlupt P
    Pharmacol Toxicol; 1989 Oct; 65(4):302-5. PubMed ID: 2555805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification, characterization and regional distribution in brain of RPDE-6 (RNPDE4A5), a novel splice variant of the PDE4A cyclic AMP phosphodiesterase family.
    McPhee I; Pooley L; Lobban M; Bolger G; Houslay MD
    Biochem J; 1995 Sep; 310 ( Pt 3)(Pt 3):965-74. PubMed ID: 7575434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a liver low Michaelis-Menten constant 3',5'-cyclic adenosine monophosphate phosphodiesterase activity sensitive to thyroid status.
    Benelli C; Geoffroy V; Fouque F; Lopez S; Desbuquois B
    Endocrinology; 1991 May; 128(5):2376-86. PubMed ID: 1850351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification, characterization and production of rabbit antibodies to rat liver particulate, high-affinity, cyclic AMP phosphodiesterase.
    Whitson RH; Appleman MM
    Biochim Biophys Acta; 1982 Feb; 714(2):279-91. PubMed ID: 6275911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-related changes of cyclic AMP phosphodiesterase activity in rat brain regions and a new phosphodiesterase inhibitor--nootropic agent adafenoxate.
    Stancheva SL; Alova LG
    Gen Pharmacol; 1991; 22(5):955-8. PubMed ID: 1662175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resolution of soluble cyclic nucleotide phosphodiesterase isoenzymes, from liver and hepatocytes, identifies a novel IBMX-insensitive form.
    Lavan BE; Lakey T; Houslay MD
    Biochem Pharmacol; 1989 Nov; 38(22):4123-36. PubMed ID: 2480793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insulin stimulation of particulate, low Km adenosine 3',5'-monophosphate phosphodiesterase activity in fat cells of the obese-hyperglycemic (ob/ob) mouse.
    Malbon CC; Fain JN
    J Cyclic Nucleotide Res; 1977 Oct; 3(5):315-23. PubMed ID: 201679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic nucleotide phosphodiesterase from a particulate fraction of rat brain. Evidence for an activator deficient form.
    Lindl T; Chapman G
    Biochem Biophys Res Commun; 1976 Aug; 71(4):1273-82. PubMed ID: 9937
    [No Abstract]   [Full Text] [Related]  

  • 16. Distribution of cyclic AMP phosphodiesterase in adipose tissue from trained rats.
    Kenno KA; Durstine JL; Shepherd RE
    J Appl Physiol (1985); 1986 Oct; 61(4):1546-51. PubMed ID: 3023273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of human placental cytosolic adenosine 3',5'-monophosphate phosphodiesterase by inhibitors and insulin treatment.
    Xiong LM; LeBon TR; Fujita-Yamaguchi Y
    Endocrinology; 1990 Apr; 126(4):2102-9. PubMed ID: 2156681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissimilar cyclic nucleotide phosphodiesterase activities in subcellular fractions from normal and SV40-transformed WI-38 fibroblasts.
    Nemecek GM; Butcher RW
    J Cyclic Nucleotide Res; 1979 Dec; 5(6):449-61. PubMed ID: 94064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of transsynaptically elicited increase of 3':5'-cyclic AMP by endogenous phosphodiesterase activator.
    Gnegy ME; Costa E; Uzunov P
    Proc Natl Acad Sci U S A; 1976 Feb; 73(2):352-5. PubMed ID: 174103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of cyclic nucleotide phosphodiesterase activity in rhesus fetal muscle.
    Beatty CH; Herrington PT; Bocek RM
    Biol Neonate; 1977; 32(1-2):33-42. PubMed ID: 198031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.