BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 6095908)

  • 1. Membrane reconstitution of the energy-conserving enzymes of oxidative phosphorylation.
    Casey RP
    Biochim Biophys Acta; 1984 Dec; 768(3-4):319-47. PubMed ID: 6095908
    [No Abstract]   [Full Text] [Related]  

  • 2. Relation of Arrhenius discontinuities of NADH dehydrogenase to change in membrane lipid fluidity of Bacillus caldotenax.
    Kawada N; Nosoh Y
    FEBS Lett; 1981 Feb; 124(1):15-8. PubMed ID: 7215551
    [No Abstract]   [Full Text] [Related]  

  • 3. [Structural and kinetic parameters of the oxidative phosphorylation system, participating in the synchronization of mitochondrial respiratory chain and ATP-synthetase functions].
    Marshanskiĭ VN; Krasinskaia IP; Dragunova SF; Iaguzhinskiĭ LS
    Biokhimiia; 1984 Mar; 49(3):403-8. PubMed ID: 6326863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational changes in cytochrome aa3 and ATP synthetase of the mitochondrial membrane and their role in mitochondrial energy transduction.
    Wikström MK; Saari HT
    Mol Cell Biochem; 1976 Mar; 11(1):17-33. PubMed ID: 5667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Phospholipids and oxidative phosphorylation].
    Mikel'saar Kh; Severina II; Skulachev VP
    Usp Sovrem Biol; 1974; 78(3):348-70. PubMed ID: 4374840
    [No Abstract]   [Full Text] [Related]  

  • 6. [Catalytic properties of mitochondrial ATP-synthetase].
    Vinogradov AD
    Biokhimiia; 1984 Aug; 49(8):1220-38. PubMed ID: 6093895
    [No Abstract]   [Full Text] [Related]  

  • 7. On the enzymic mechanism of oxidative phosphorylation.
    Green DE; Vande Zande H
    Proc Natl Acad Sci U S A; 1982 Feb; 79(4):1064-8. PubMed ID: 6280165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Interaction of NADH-dehydrogenase from M. lysodeikticus membranes with lipids in a reconstituted system].
    Dergunov AD; Zhukova IG; Nikul'tseva TP; Degteva GK; Nosova TV
    Biokhimiia; 1982 Mar; 47(3):478-88. PubMed ID: 7074174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Lipids as possible proton carriers from the respiratory chain to ATP-synthetase and the mechanism of oxidative phosphorylation].
    Kocherginskiĭ NM
    Biofizika; 1979; 24(5):954-9. PubMed ID: 226177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Respiratory chain complexes and membrane fatty acids composition in rat testis mitochondria throughout development and ageing.
    Vázquez-Memije ME; Cárdenas-Méndez MJ; Tolosa A; Hafidi ME
    Exp Gerontol; 2005 Jun; 40(6):482-90. PubMed ID: 15972255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme topology of intracellular membranes.
    DePierre JW; Ernster L
    Annu Rev Biochem; 1977; 46():201-62. PubMed ID: 197876
    [No Abstract]   [Full Text] [Related]  

  • 12. [Detection of a paramagnetic product developing during oxidative phosphorylation in mitochondria].
    Vishneskiĭ ES; Brzhevskaia ON; Nedelina OS; Sheksheev EM; Kaiushin LP
    Biofizika; 1980; 25(4):740-1. PubMed ID: 6251923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstitution of ATP synthetase on a collagen membrane that can synthesize ATP using a pH gradient.
    Blanchy B; Godinot C; Gautheron DC
    Methods Enzymol; 1979; 55():742-8. PubMed ID: 37408
    [No Abstract]   [Full Text] [Related]  

  • 14. Evidence for an alternative and non-phosphorylating pathway for NADH reoxidation in a yeast strain resistant to glucose repression.
    Camougrand NM; Caubet RB; Guerin MG
    Eur J Biochem; 1983 Sep; 135(2):367-71. PubMed ID: 6309524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstitution of ATP synthetase from heart mitochondria.
    Kagawa Y
    Methods Enzymol; 1979; 55():711-5. PubMed ID: 223002
    [No Abstract]   [Full Text] [Related]  

  • 16. H+-Adenosine triphosphatase and membrane energy coupling.
    Kozlov IA; Skulachev VP
    Biochim Biophys Acta; 1977 Jun; 463(1):29-89. PubMed ID: 19061
    [No Abstract]   [Full Text] [Related]  

  • 17. A minimal hypothesis for membrane-linked free-energy transduction. The role of independent, small coupling units.
    Westerhoff HV; Melandri BA; Venturoli G; Azzone GF; Kell DB
    Biochim Biophys Acta; 1984 Dec; 768(3-4):257-92. PubMed ID: 6095906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton translocation in proteins.
    Copeland RA; Chan SI
    Annu Rev Phys Chem; 1989; 40():671-98. PubMed ID: 2557045
    [No Abstract]   [Full Text] [Related]  

  • 19. Inhibition of energy-transducing reactions by 8-nitreno-ATP covalently bound to bovine heart submitochondrial particles: direct interaction between ATPase and redox enzymes.
    Herweijer MA; Berden JA; Kemp A; Slater EC
    Biochim Biophys Acta; 1985 Aug; 809(1):81-9. PubMed ID: 2862915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arrangement of proteins in the mitochondrial inner membrane.
    Capaldi RA
    Biochim Biophys Acta; 1982 Nov; 694(3):291-306. PubMed ID: 6295486
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.