These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 6096160)

  • 1. Purification from human plasma of endogenous sodium transport inhibitor(s).
    Cloix JF; Dagher G; Crabos M; Pernollet MG; Meyer P
    Experientia; 1984 Dec; 40(12):1380-2. PubMed ID: 6096160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical and biochemical approach of a circulating Na+-pump inhibitor.
    Devynck MA; de The H; Pernollet MG; Cloix JF; Rosenfeld JB; Kamal LA; Meyer P
    J Physiol (Paris); 1984; 79(6):538-41. PubMed ID: 6152634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of erythrocyte Na transport pathway(s) by excess Na intake.
    Dagher G; Brossard M; Feray JC; Garay RP
    Life Sci; 1985 Jul; 37(3):243-53. PubMed ID: 2989644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ouabain and furosemide on erythrocyte sodium and phosphate transport.
    Walter U
    Clin Pharmacol Ther; 1981 Dec; 30(6):709-17. PubMed ID: 6273055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of alteration of sodium potassium pump of erythrocytes from patients with chronic renal failure.
    Cheng JT; Kahn T; Kaji DM
    J Clin Invest; 1984 Nov; 74(5):1811-20. PubMed ID: 6094614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Circulating inhibitor of the Na+-K+ pump in essential hypertension. Physiological and pharmacological variations].
    Pernollet MG; de Thé H; Delva P; Wauquier I; Devynck MA; Baudouin-Legros M; Deray G; Rosenfeld J; Meyer P
    Arch Mal Coeur Vaiss; 1984 Oct; 77(11):1283-7. PubMed ID: 6098238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular sodium, potassium and magnesium concentration, ouabain-sensitive 86rubidium-uptake and sodium-efflux and Na+, K+-cotransport activity in erythrocytes of normal male subjects studied on two occasions.
    Lijnen P; Hespel P; Lommelen G; Laermans M; M'Buyamba-Kabangu JR; Amery A
    Methods Find Exp Clin Pharmacol; 1986 Sep; 8(9):525-33. PubMed ID: 3773597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na+ and K+ transport at basolateral membranes of epithelial cells. II. K+ efflux and stoichiometry of the Na,K-ATPase.
    Cox TC; Helman SI
    J Gen Physiol; 1986 Mar; 87(3):485-502. PubMed ID: 2420920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular sodium concentration and transport in red cells in essential hypertension, hyperthyroidism, pregnancy and hypokalemia.
    Gless KH; Sütterlin U; Schaz K; Schütz V; Hunstein W
    Clin Physiol Biochem; 1986; 4(3):199-209. PubMed ID: 3011343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the role of sodium- and potassium-activated adenosine triphosphatase inhibition in the pathogenesis of human hypertension. Changes in vascular and cardiac function following inhibition of the sodium pump in normotensive subjects and effects of calcium entry blockade.
    Kramer HJ; Glänzer K; Freitag T; Schönfeld J; Sorger M; Schlebusch H; Düsing R; Krück F
    Klin Wochenschr; 1985 Jan; 63(1):32-6. PubMed ID: 2579261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erythrocyte sodium fluxes, ouabain binding sites, and Na+,K(+)-ATPase activity in hyperthyroidism.
    Arumanayagam M; MacDonald D; Cockram CS; Swaminathan R
    Metabolism; 1990 Sep; 39(9):952-7. PubMed ID: 2168011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erythrocyte sodium content, sodium transport, ouabain binding capacity and Na+, K+-ATPase activity in lean and obese subjects.
    Hawkins M; Whittaker J; Wales JK; Swaminathan R
    Horm Metab Res; 1984 Jun; 16(6):282-5. PubMed ID: 6094324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abnormalities of erythrocyte sodium transport systems in Bartter's syndrome.
    Sechi LA; Melis A; Bartoli E
    Am J Nephrol; 1992; 12(3):137-43. PubMed ID: 1329511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in erythrocyte cation (sodium) transport between Chinese and non Chinese males.
    Arumanayagam M; MacDonald D; Swaminathan R
    Clin Exp Hypertens A; 1987; 9(4):719-39. PubMed ID: 2441909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absence of effect of aldosterone on sodium efflux catalyzed by the human erythrocyte Na+, K+-ATPase in vitro.
    Díez J
    J Steroid Biochem; 1987; 27(4-6):963-6. PubMed ID: 2826914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitin: a specific inhibitor of sodium/sodium exchange in erythrocytes.
    Morgan K; Brown RC; Spurlock G; Southgate K; Mir MA
    J Clin Invest; 1986 Feb; 77(2):538-44. PubMed ID: 2418064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inverse relationship between ouabain sites on human erythrocytes and body mass index in normal healthy subjects.
    Narayanareddy K; Kaplay SS
    Metabolism; 1983 Jul; 32(7):722-7. PubMed ID: 6306389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Irreversible changes in rat erythrocyte Na+ transport systems with progesterone and estradiol administration.
    Grichois ML; Franck D; Brossard M; De Mendonca M
    Clin Exp Hypertens A; 1986; 8(8):1295-311. PubMed ID: 2434270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A furosemide-sensitive cotransport of sodium plus potassium in the human red cell.
    Wiley JS; Cooper RA
    J Clin Invest; 1974 Mar; 53(3):745-55. PubMed ID: 4812437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An effect of chloride on (Na+K) co-transport in human red blood cells.
    Chipperfield AR
    Nature; 1980 Jul; 286(5770):281-2. PubMed ID: 6250053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.