BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 6096204)

  • 1. The interaction of copper chloride with erythrocyte membrane as a source of activated oxygen species. A chemiluminescent study.
    Ribarov SR; Bochev PG
    Gen Physiol Biophys; 1984 Oct; 3(5):431-5. PubMed ID: 6096204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interaction of copper (Cu++) with the erythrocyte membrane and 2,3-dimercaptopropanesulphonate in vitro: a source of activated oxygen species.
    Aaseth J; Ribarov S; Bochev P
    Pharmacol Toxicol; 1987 Oct; 61(4):250-3. PubMed ID: 3432203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of superoxide and hydrogen peroxide during interaction of nitrite with human hemoglobin.
    Watanabe S; Ogata M
    Acta Med Okayama; 1981 Jun; 35(3):173-8. PubMed ID: 6270983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple and effective method for hemolysis with a hypoxanthine-xanthine oxidase system and alteration of erythrocyte phospholipid composition during the hemolysis.
    Taniguchi M; Aikawa M; Sakagami T
    J Biochem; 1981 Mar; 89(3):795-800. PubMed ID: 6895220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of an oxidative mechanism for the hemolytic activity of silica particles.
    Razzaboni BL; Bolsaitis P
    Environ Health Perspect; 1990 Jul; 87():337-41. PubMed ID: 2176590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent binding of bleomycin to concanavalin A and immunoglobulin G enhances the ability of the bleomycin-Fe(II) complex to destroy the erythrocyte membrane.
    Voznesenskii AI; Galanova YuV ; Archakov AI
    Biomed Sci; 1991; 2(2):147-50. PubMed ID: 1723008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of O2- and tyrosine cation-mediated chemiluminescence during the fertilization of sea urchin eggs.
    Takahashi A; Totsune-Nakano H; Nakano M; Mashiko S; Suzuki N; Ohma C; Inaba H
    FEBS Lett; 1989 Mar; 246(1-2):117-9. PubMed ID: 2540031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adverse consequences of erythrocyte exposure to menadione: involvement of reactive oxygen species generation in plasma.
    Chung SM; Lee JY; Lee MY; Bae ON; Chung JH
    J Toxicol Environ Health A; 2001 Aug; 63(8):617-29. PubMed ID: 11549121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of active forms of oxygen at Cu2+-catalyzed oxidation of haemoglobin--haemiluminescent study.
    Bochev P; Ribarov S
    Acta Physiol Pharmacol Bulg; 1983; 9(1):59-65. PubMed ID: 6312741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of radical oxygen species by neural crest cells treated in vitro with isotretinoin and 4-oxo-isotretinoin.
    Davis WL; Crawford LA; Cooper OJ; Farmer GR; Thomas D; Freeman BL
    J Craniofac Genet Dev Biol; 1990; 10(3):295-310. PubMed ID: 2175753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Biochemistry of the physiopathologic and clinical aspects of free radicals in hemolysis].
    Miki M
    Nihon Rinsho; 1988 Oct; 46(10):2217-22. PubMed ID: 2853785
    [No Abstract]   [Full Text] [Related]  

  • 12. Possible generation of hydrogen peroxide and lipid peroxidation of erythrocyte membrane by asbestos: cytotoxic mechanism of asbestos.
    Iguchi H; Kojo S
    Biochem Int; 1989 May; 18(5):981-90. PubMed ID: 2783149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free radical generation in hydroperoxide-treated erythrocytes monitored continuously by luminol-amplified chemiluminescence.
    Smith JA; Baker MS; Weidemann MJ
    Biochem Int; 1992 Dec; 28(6):1009-20. PubMed ID: 1290455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of horseradish peroxidase catalyzed epinephrine oxidation: obligatory role of endogenous O2- and H2O2.
    Adak S; Bandyopadhyay U; Bandyopadhyay D; Banerjee RK
    Biochemistry; 1998 Dec; 37(48):16922-33. PubMed ID: 9836585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autoxidation of dopamine: a comparison of luminescent and spectrophotometric detection in basic solutions.
    Klegeris A; Korkina LG; Greenfield SA
    Free Radic Biol Med; 1995 Feb; 18(2):215-22. PubMed ID: 7744304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specificity of oxygen radical scavengers and assessment of free radical scavenger efficiency using luminol enhanced chemiluminescence.
    Rao PS; Luber JM; Milinowicz J; Lalezari P; Mueller HS
    Biochem Biophys Res Commun; 1988 Jan; 150(1):39-44. PubMed ID: 2827676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deterioration of axonal membranes induced by phenolic pro-oxidants. Roles of superoxide radicals and hydrogen peroxide.
    Davison AJ; Wilson BD; Belton P
    Biochem Pharmacol; 1984 Dec; 33(23):3887-91. PubMed ID: 6095863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superoxide and hydrogen peroxide-dependent lipid peroxidation in intact and triton-dispersed erythrocyte membranes.
    Girotti AW; Thomas JP
    Biochem Biophys Res Commun; 1984 Jan; 118(2):474-80. PubMed ID: 6322749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of exogenous hydrogen peroxide on human erythrocytes.
    Tozzi-Ciancarelli MG; Di Massimo C; D'Orazio MC; Mascioli A; Di Giulio A; Tozzi E
    Cell Mol Biol; 1990; 36(1):57-64. PubMed ID: 2337915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA strand scission by enzymically generated oxygen radicals.
    Brawn K; Fridovich I
    Arch Biochem Biophys; 1981 Feb; 206(2):414-9. PubMed ID: 6261698
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.