These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 6096204)

  • 61. The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: chemiluminescence and peroxidation.
    Hodgson EK; Fridovich I
    Biochemistry; 1975 Dec; 14(24):5299-303. PubMed ID: 172122
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Interaction of paramyxoviruses with concanavalin A-modified erythrocyte membranes.
    Yamamoto K; Inoue K
    Virology; 1978 Jan; 84(1):203-6. PubMed ID: 619488
    [No Abstract]   [Full Text] [Related]  

  • 63. The role of superoxide radicals in lactoperoxidase-catalysed H2O2-metabolism and in irreversible enzyme inactivation.
    Jenzer H; Kohler H
    Biochem Biophys Res Commun; 1986 Aug; 139(1):327-32. PubMed ID: 3021127
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Neutrophil-induced erythrocyte injury: a potential cause of erythrocyte destruction in the anemia associated with inflammatory disease.
    Weiss DJ; Klausner JS
    Vet Pathol; 1988 Nov; 25(6):450-5. PubMed ID: 2850649
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Different behaviour of normal and neoplastic cells cultured in vitro in the presence of catalase and superoxide dismutase.
    Liotti FS; Bodo M; Menghini AR; Guerrieri P; Mariucci G; Bruschelli G
    Int J Cancer; 1987 Sep; 40(3):354-7. PubMed ID: 3040600
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Binding of haemoglobin to the red-cell membrane in the presence of copper chloride.
    Ribarov SR; Benchev IC; Strashimirov DD
    Biochem J; 1984 Apr; 219(1):317-20. PubMed ID: 6721860
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A sensitive and specific assay for superoxide anion released by neutrophils or macrophages based on bioluminescence of polynoidin.
    Colepicolo P; Camarero VC; Nicolas MT; Bassot JM; Karnovsky ML; Hastings JW
    Anal Biochem; 1990 Feb; 184(2):369-74. PubMed ID: 2158250
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Red cell lysis induced by microorganisms as a case of superoxide- and hydrogen peroxide-dependent hemolysis mediated by oxyhemoglobin.
    Falcioni GC; Coderoni S; Tedeschi GG; Brunori M; Rotilio G
    Biochim Biophys Acta; 1981 Dec; 678(3):437-41. PubMed ID: 6797478
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Changes in macromolecular permeability by intravascular generation of oxygen-derived free radicals.
    Ley K; Arfors KE
    Microvasc Res; 1982 Jul; 24(1):25-33. PubMed ID: 6181379
    [No Abstract]   [Full Text] [Related]  

  • 70. Chemiluminescent Analysis of Reactive Oxygen Species Synthesis by Platelets from Patients with Coronary Heart Disease.
    Savchenko AA; Goncharov MD; Grinsthein YI; Gvozdev II; Mongush TS; Kosinova AA
    Bull Exp Biol Med; 2020 Aug; 169(4):535-538. PubMed ID: 32910382
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Inhibition of programmed cell death by catalase and phenylalanine methyl ester.
    Little GH; Flores A
    Comp Biochem Physiol Comp Physiol; 1993 May; 105(1):79-83. PubMed ID: 8099875
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Modulation of alpha-methyldopa binding to the erythrocyte membrane by superoxide dismutase.
    Green FA; Jung CY; Hui H
    Biochem Biophys Res Commun; 1980 Aug; 95(3):1037-42. PubMed ID: 7417298
    [No Abstract]   [Full Text] [Related]  

  • 73. Lead-hemoglobin interaction as a possible source of reactive oxygen species--a chemiluminescent study.
    Ribarov SR; Bochev PG
    Arch Biochem Biophys; 1982 Jan; 213(1):288-92. PubMed ID: 7059181
    [No Abstract]   [Full Text] [Related]  

  • 74. A chemiluminescent method for measurement of activated oxygen forms in biological fluids and homogenates.
    Ribarov SR; Bochev PG
    J Biochem Biophys Methods; 1983 Nov; 8(3):205-12. PubMed ID: 6317733
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Haemolytic activity of copper as influenced by chelating agents, albumine and chromium.
    Aaseth J; Skaug V; Alexander J
    Acta Pharmacol Toxicol (Copenh); 1984 Apr; 54(4):304-10. PubMed ID: 6730985
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Hemolysis of human erythrocytes by activated oxygen species.
    Michelson AM; Durosay P
    Photochem Photobiol; 1977 Jan; 25(1):55-63. PubMed ID: 191855
    [No Abstract]   [Full Text] [Related]  

  • 77. Generation of daunomycin radicals on the outer side of the erythrocyte membrane.
    Pedersen JZ; Marcocci L; Rossi L; Mavelli I; Rotilio G
    Biochem Biophys Res Commun; 1990 Apr; 168(1):240-7. PubMed ID: 2158316
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Studies on rubescenslysin haemolysis.
    Seeger R
    Naunyn Schmiedebergs Arch Pharmacol; 1980 Feb; 311(1):95-103. PubMed ID: 7378144
    [No Abstract]   [Full Text] [Related]  

  • 79. The role of interactions between O2, H2O2, .OH,e- and O2- in free radical damage to biological systems.
    Kong S; Davison AJ
    Arch Biochem Biophys; 1980 Oct; 204(1):18-29. PubMed ID: 6252843
    [No Abstract]   [Full Text] [Related]  

  • 80. First electron spin resonance evidence for the generation of the daunomycin free radical and superoxide by red blood cell membranes.
    Pedersen JZ; Marcocci L; Rossi L; Mavelli I; Rotilio G
    Ann N Y Acad Sci; 1988; 551():121-7. PubMed ID: 2854416
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.