BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 6096547)

  • 1. The kinetic mechanism by which CCCP (carbonyl cyanide m-chlorophenylhydrazone) transports protons across membranes.
    Kasianowicz J; Benz R; McLaughlin S
    J Membr Biol; 1984; 82(2):179-90. PubMed ID: 6096547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How do protons cross the membrane-solution interface? Kinetic studies on bilayer membranes exposed to the protonophore S-13 (5-chloro-3-tert-butyl-2'-chloro-4' nitrosalicylanilide).
    Kasianowicz J; Benz R; McLaughlin S
    J Membr Biol; 1987; 95(1):73-89. PubMed ID: 3031309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone).
    Benz R; McLaughlin S
    Biophys J; 1983 Mar; 41(3):381-98. PubMed ID: 6838976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient currents carried by the uncoupler, carbonyl cyanide m-chlorophenylhydrazone.
    O'Shaughnessy K; Hladky SB
    Biochim Biophys Acta; 1983 Sep; 724(3):381-7. PubMed ID: 6615824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of rates of H+, Na+ and K+ transport across phospholipid vesicular membrane by the combined action of carbonyl cyanide m-chlorophenylhydrazone and valinomycin: temperature-jump studies.
    Prabhananda BS; Kombrabail MH
    Biochim Biophys Acta; 1995 May; 1235(2):323-35. PubMed ID: 7756342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study of the primary effect of the uncoupler carbonyl cyanide m-chlorophenylhydrazone on membrane potential and conductance in Riccia fluitans.
    Felle H; Bentrup FW
    Biochim Biophys Acta; 1977 Jan; 464(1):179-87. PubMed ID: 831789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of metal ion free valinomycin-carbonyl cyanide m-chlorophenylhydrazone complex in the enhancement of the rates of gramicidin facilitated net H+, Li+ and Na+ transport across phospholipid vesicular membrane.
    Prabhananda BS; Kombrabail MH
    Biochim Biophys Acta; 1997 Jan; 1323(1):137-44. PubMed ID: 9030220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutual inactivation of valinomycin and protonophores by complex formation in liposomal membranes.
    Krishnamoorthy G
    FEBS Lett; 1988 May; 232(1):199-203. PubMed ID: 2835269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of AC voltage on the ionophore-induced steady-state flux across the bilayer lipid membrane.
    Dzekunov SM; Antonenko YuN ; Pohl P
    Membr Cell Biol; 1997; 11(4):529-38. PubMed ID: 9553940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of the electrogenic ionophores, valinomycin and CCCP, can lead to non-electrogenic K+/H+ exchange on bilayer lipid membranes.
    Orlov VN; Antonenko YN; Bulychev AA; Yaguzhinsky LS
    FEBS Lett; 1994 May; 345(2-3):104-6. PubMed ID: 7515356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The kinetic mechanism of action of an uncoupler of oxidative phosphorylation.
    Cohen FS; Eisenberg M; McLaughlin S
    J Membr Biol; 1977 Dec; 37(3-4):361-96. PubMed ID: 23435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature jump as a new technique to study the kinetics of fast transport of protons across membranes.
    Krishnamoorthy G
    Biochemistry; 1986 Oct; 25(21):6666-71. PubMed ID: 3024717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protonophore anion permeability of the human red cell membrane determined in the presence of valinomycin.
    Bennekou P
    J Membr Biol; 1988 Jun; 102(3):225-34. PubMed ID: 3172181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. H
    Plášek J; Babuka D; Hoefer M
    J Bioenerg Biomembr; 2017 Oct; 49(5):391-397. PubMed ID: 28900787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the mechanism by which bupivacaine conducts protons across the membranes of mitochondria and liposomes.
    Sun X; Garlid KD
    J Biol Chem; 1992 Sep; 267(27):19147-54. PubMed ID: 1382068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flux ratio of valinomycin-mediated K+ fluxes across the human red cell membrane in the presence of the protonophore CCCP.
    Bennekou P; Christophersen P
    J Membr Biol; 1986; 93(3):221-7. PubMed ID: 3820279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton flux in large unilamellar vesicles in response to membrane potentials and pH gradients.
    Redelmeier TE; Mayer LD; Wong KF; Bally MB; Cullis PR
    Biophys J; 1989 Aug; 56(2):385-93. PubMed ID: 2775833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of carbonyl cyanide 3-chlorophenylhydrazone with cytochrome c oxidase.
    Bona M; Antalík M; Gazová Z; Kuchár A; Dadák V; Podhradský D
    Gen Physiol Biophys; 1993 Dec; 12(6):533-42. PubMed ID: 8070645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage dependence of the Chara proton pump revealed by current-voltage measurement during rapid metabolic blockade with cyanide.
    Blatt MR; Beilby MJ; Tester M
    J Membr Biol; 1990 Apr; 114(3):205-23. PubMed ID: 2157844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of carbonyl cyanide m-chlorophenylhydrazone on steroid transport in membrane vesicles of Pseudomonas testosteroni.
    Culos D; Watanabe M
    J Steroid Biochem; 1983 Aug; 19(2):1127-33. PubMed ID: 6310264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.