These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 6096547)
41. Caffeine and carbonyl cyanide m-chlorophenylhydrazone increased evoked and spontaneous release of luteinizing hormone-releasing hormone from intact presynaptic terminals. Cao YJ; Peng YY Neuroscience; 1999; 92(4):1511-21. PubMed ID: 10426503 [TBL] [Abstract][Full Text] [Related]
42. Mechanism of inhibition by carbonyl cyanide m-chlorophenylhydrazone and sodium deoxycholate of cytochrome P-450-catalysed hepatic microsomal drug metabolism. Tsyrlov IB; Gromova OA; Lyakhovich VV Biochem J; 1976 Oct; 160(1):75-83. PubMed ID: 12746 [TBL] [Abstract][Full Text] [Related]
43. The rate constants of valinomycin-mediated ion transport through thin lipid membranes. Stark G; Ketterer B; Benz R; Läuger P Biophys J; 1971 Dec; 11(12):981-94. PubMed ID: 4332419 [TBL] [Abstract][Full Text] [Related]
44. Characteristics of energy-linked proton translocation in liposome reconstituted bovine cytochrome bc1 complex. Influence of the protonmotive force on the H+/e- stoichiometry. Cocco T; Lorusso M; Di Paola M; Minuto M; Papa S Eur J Biochem; 1992 Oct; 209(1):475-81. PubMed ID: 1327781 [TBL] [Abstract][Full Text] [Related]
45. Effect of carbonyl cyanide m-chlorophenylhydrazone (CCCP) on the dimerization of lipoprotein lipase. Park JW; Lee SY; Yang JY; Rho HW; Park BH; Lim SN; Kim JS; Kim HR Biochim Biophys Acta; 1997 Jan; 1344(2):132-8. PubMed ID: 9030190 [TBL] [Abstract][Full Text] [Related]
46. Metabolic changes in Crithidia fasciculata accompanying physiological adaptation to growth in the presence of carbonyl cyanide m-chlorophenylhydrazone. Kutzman RS; Roberts JF Comp Biochem Physiol B; 1979; 62(4):449-53. PubMed ID: 45556 [TBL] [Abstract][Full Text] [Related]
47. Membrane photopotential generation by interfacial differences in the turnover of a photodynamic reaction. Sokolov VS; Block M; Stozhkova IN; Pohl P Biophys J; 2000 Oct; 79(4):2121-31. PubMed ID: 11023915 [TBL] [Abstract][Full Text] [Related]
48. An improved procedure for reconstitution of the uncoupling protein and in-depth analysis of H+/OH- transport. Winkler E; Klingenberg M Eur J Biochem; 1992 Jul; 207(1):135-45. PubMed ID: 1378400 [TBL] [Abstract][Full Text] [Related]
50. Significant enhancement of photobiological H2 evolution by carbonylcyanide m-chlorophenylhydrazone in the marine green alga Platymonas subcordiformis. Guan Y; Zhang W; Deng M; Jin M; Yu X Biotechnol Lett; 2004 Jul; 26(13):1031-5. PubMed ID: 15218374 [TBL] [Abstract][Full Text] [Related]
51. Mechanism of ion transport through lipid bilayer-membranes mediated by peptide cyclo-(D-Val-L-Pro-L-Val-D-Pro). Benz R; Gisin BF; Ting-Beall HP; Tosteson DC; Läuger P Biochim Biophys Acta; 1976 Dec; 455(3):665-84. PubMed ID: 999934 [TBL] [Abstract][Full Text] [Related]
52. A simple light-driven transmembrane proton pump. Sun K; Mauzerall D Proc Natl Acad Sci U S A; 1996 Oct; 93(20):10758-62. PubMed ID: 8855253 [TBL] [Abstract][Full Text] [Related]
53. Steady-state and transient membrane potentials in human red cells determined by protonophore-mediated pH changes. Bennekou P J Membr Biol; 1988 Nov; 106(1):41-6. PubMed ID: 3225839 [TBL] [Abstract][Full Text] [Related]
54. Salicylates and proton transport through lipid bilayer membranes: a model for salicylate-induced uncoupling and swelling in mitochondria. Gutknecht J J Membr Biol; 1990 May; 115(3):253-60. PubMed ID: 2165171 [TBL] [Abstract][Full Text] [Related]
55. Light-induced potential and current across a large bacteriorhodopsin-asolectin planar membrane stabilized on a polyacrylamide gel surface. Setaka M; Satoh N; Kobayashi T; Hongo T; Kwan T; Yamaguchi A; Futai M J Biochem; 1986 Mar; 99(3):777-83. PubMed ID: 2423507 [TBL] [Abstract][Full Text] [Related]
56. Presynaptic function is altered in snake K+-depolarized motor nerve terminals containing compromised mitochondria. Calupca MA; Prior C; Merriam LA; Hendricks GM; Parsons RL J Physiol; 2001 Apr; 532(Pt 1):217-27. PubMed ID: 11283236 [TBL] [Abstract][Full Text] [Related]
57. Mechanism of uncoupling in mitochondria: uncouplers as ionophores for cycling cations and protons. Kessler RJ; Tyson CA; Green DE Proc Natl Acad Sci U S A; 1976 Sep; 73(9):3141-5. PubMed ID: 9641 [TBL] [Abstract][Full Text] [Related]
58. The electrical response to light of bacteriorhodopsin in planar membranes. Herrmann TR; Rayfield GW Biophys J; 1978 Feb; 21(2):111-25. PubMed ID: 623861 [TBL] [Abstract][Full Text] [Related]
59. Proton/hydroxide conductance and permeability through phospholipid bilayer membranes. Gutknecht J Proc Natl Acad Sci U S A; 1987 Sep; 84(18):6443-6. PubMed ID: 2819878 [TBL] [Abstract][Full Text] [Related]
60. Osmotic adaptation of Escherichia coli with a negligible proton motive force in the presence of carbonyl cyanide m-chlorophenylhydrazone. Ohyama T; Mugikura S; Nishikawa M; Igarashi K; Kobayashi H J Bacteriol; 1992 May; 174(9):2922-8. PubMed ID: 1314804 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]