These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 6097529)

  • 41. ATP inactivates hydrolysis of the K+-sensitive phosphoenzyme of kidney Na+,K+-transport ATPase and activates that of muscle sarcoplasmic reticulum Ca2+-transport ATPase.
    Fukushima Y; Yamada S; Nakao M
    J Biochem; 1984 Feb; 95(2):359-68. PubMed ID: 6325400
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inhibition of the Na,K-ATPase by fluoride. Parallels with its inhibition of the sarcoplasmic reticulum CaATPase.
    Murphy AJ; Hoover JC
    J Biol Chem; 1992 Aug; 267(24):16995-700. PubMed ID: 1324918
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ca2+-dependent ATPase activity of alveolar macrophage plasma membrane.
    Gennaro R; Mottola C; Schneider C; Romeo D
    Biochim Biophys Acta; 1979 Mar; 567(1):238-46. PubMed ID: 156558
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exaprolol as a modulator of heart sarcolemmal (Na+ + K+)-ATPase. Evidence for interaction with an essential sulfhydryl group in the catalytic centre of the enzyme.
    Dzurba A; Ziegelhöffer A; Schmidtová L; Breier A; Vrbjar N; Okolicány J
    Gen Physiol Biophys; 1985 Jun; 4(3):257-64. PubMed ID: 2863195
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of fluoride on the intracellular free Ca2+ and Ca2+-ATPase of kidney.
    Xu H; Zhou YL; Zhang JM; Liu H; Jing L; Li GS
    Biol Trace Elem Res; 2007 Jun; 116(3):279-88. PubMed ID: 17709908
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effects of storage of sarcoplasmic reticulum fragments on the Ca2+, Mg2+-ATPase.
    Nakamura J; Konishi K
    J Biochem; 1978 Jun; 83(6):1731-5. PubMed ID: 149789
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ca(2+)-ATPase and Mg(2+)-ATPase activities distinct from alkaline phosphatase in rat jejunal brush-border membranes.
    Wang H; Gilles-Baillien M
    Arch Int Physiol Biochim Biophys; 1993; 101(6):387-93. PubMed ID: 7511433
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of suppression of eggshell calcification and of 1,25(OH)2D3 on Mg2+, Ca2+ and Mg2+HCO-3 ATPase, alkaline phosphatase, carbonic anhydrase and CaBP levels--II. The laying hen intestine.
    Nys Y; de Laage X
    Comp Biochem Physiol A Comp Physiol; 1984; 78(4):839-44. PubMed ID: 6149059
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adenosine triphosphatases during maturation of cultured human skeletal muscle cells and in adult human muscle.
    Benders AG; van Kuppevelt TH; Oosterhof A; Wevers RA; Veerkamp JH
    Biochim Biophys Acta; 1992 Nov; 1112(1):89-98. PubMed ID: 1329967
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of erythropoietin on the different ATPases and acetylcholinesterase of rat RBC membrane.
    Chakraborty M; Ghosal J; Biswas T; Datta AG
    Biochem Med Metab Biol; 1986 Oct; 36(2):231-8. PubMed ID: 3022776
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cortisol effect on (Na+ + K+)-stimulated ATPase activity and on bilayer fluidity of dog brain synaptosomal plasma membranes.
    Deliconstantinos G
    Neurochem Res; 1985 Dec; 10(12):1605-13. PubMed ID: 3003615
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Site-specific localization of two distinct phosphatases along the osteoblast plasma membrane: tissue non-specific alkaline phosphatase and plasma membrane calcium ATPase.
    Nakano Y; Beertsen W; van den Bos T; Kawamoto T; Oda K; Takano Y
    Bone; 2004 Nov; 35(5):1077-85. PubMed ID: 15542032
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Activities of Ca2+-ATPase and Na+ + K+-ATPase in human placenta.
    Seida A; Sagesaka T; Tanaka A; Yamamoto S; Okuyama T; Furuya H
    Nihon Sanka Fujinka Gakkai Zasshi; 1980 Oct; 32(10):1625-30. PubMed ID: 6263997
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Mg2,Ca2+-ATPase activity of sarcolemmas of intestinal smooth muscle cells in the rabbit].
    Gruzina TG; Karamushka VI; Rybal'chenko VK
    Biokhimiia; 1984 Sep; 49(9):1523-8. PubMed ID: 6151402
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transport stress induces weight loss and heart injury in chicks: disruption of ionic homeostasis via modulating ion transporting ATPases.
    Li ZY; Lin J; Sun F; Li H; Xia J; Li XN; Ge J; Zhang C; Li JL
    Oncotarget; 2017 Apr; 8(15):24142-24153. PubMed ID: 28445983
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Distribution of Ca2+-ATPase, ATP-dependent Ca2+-transport, calmodulin and vitamin D-dependent Ca2+-binding protein along the villus-crypt axis in rat duodenum.
    van Corven EJ; Roche C; van Os CH
    Biochim Biophys Acta; 1985 Nov; 820(2):274-82. PubMed ID: 2996600
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ca2+-Dependent activities of (Na+ + K+)-ATPase.
    Huang WH; Askari A
    Arch Biochem Biophys; 1982 Jul; 216(2):741-50. PubMed ID: 6126159
    [No Abstract]   [Full Text] [Related]  

  • 58. Orientation of synaptic plasma membrane vesicles containing calcium pump and sodium-calcium exchange activities.
    Gill DL; Chueh SH; Noel MW; Ueda T
    Biochim Biophys Acta; 1986 Mar; 856(1):165-73. PubMed ID: 3006769
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Isolation of frog heart sarcolemma possessing (Ca2+ + Mg2+)-ATPase and Ca2+ pump activities.
    Morcos NC
    Biochim Biophys Acta; 1981 Apr; 643(1):55-62. PubMed ID: 6113007
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transient association of the sarcoplasmic reticulum Ca2+ ATPase with the Na+/K+-ATPase and H+/K+-ATPase beta-subunits during its biogenesis in Xenopus oocytes.
    Noguchi S; Sone N; Kawamura M
    J Cell Sci; 2003 May; 116(Pt 10):1875-80. PubMed ID: 12668725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.