BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 6097916)

  • 1. Band 3 protein-mediated nonelectrogenic proton equilibration across the membranes of the red blood cells of mammals, amphibians, and fish.
    Passow H; Berghout A; Romano L
    Prog Clin Biol Res; 1984; 164():95-102. PubMed ID: 6097916
    [No Abstract]   [Full Text] [Related]  

  • 2. The kinetics of the titratable carrier for anion exchange in erythrocytes.
    Gunn RB; Fröhlich O
    Ann N Y Acad Sci; 1980; 341():384-93. PubMed ID: 6249152
    [No Abstract]   [Full Text] [Related]  

  • 3. Temperature dependence of anion transport in the human red blood cell.
    Glibowicka M; Winckler B; Araníbar N; Schuster M; Hanssum H; Rüterjans H; Passow H
    Biochim Biophys Acta; 1988 Dec; 946(2):345-58. PubMed ID: 3207750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Anion transport system in human erythrocyte membrane: structure and function of band 3].
    Hamasaki N
    Tanpakushitsu Kakusan Koso; 1986 Jul; 31(8):668-80. PubMed ID: 3538191
    [No Abstract]   [Full Text] [Related]  

  • 5. Temperature dependence of H+ transport across erythrocyte membrane of Rana temporaria grass frog in media containing Cl- and SO4(2-).
    Mishchenko AA; Irzhak LI
    Bull Exp Biol Med; 2005 Oct; 140(4):381-2. PubMed ID: 16671557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The physiological properties of the band 3 anion exchanger as derived from pH and other studies with human red cells.
    Widdas WF; Baker GF
    Cytobios; 1993; 74(297):111-40. PubMed ID: 7690694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton inhibition of chloride exchange: asynchrony of band 3 proton and anion transport sites?
    Milanick MA; Gunn RB
    Am J Physiol; 1986 Jun; 250(6 Pt 1):C955-69. PubMed ID: 3013020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Band 3 protein: physiology, function and structure.
    Hamasaki N; Okubo K
    Cell Mol Biol (Noisy-le-grand); 1996 Nov; 42(7):1025-39. PubMed ID: 8960778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Erythrocyte anion transport: the kinetics of a single-site obligatory exchange system.
    Fröhlich O; Gunn RB
    Biochim Biophys Acta; 1986 Sep; 864(2):169-94. PubMed ID: 3527268
    [No Abstract]   [Full Text] [Related]  

  • 10. Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane.
    Passow H
    Rev Physiol Biochem Pharmacol; 1986; 103():61-203. PubMed ID: 2421388
    [No Abstract]   [Full Text] [Related]  

  • 11. The anion transport system of the red blood cell. The role of membrane protein evaluated by the use of 'probes'.
    Cabantchik ZI; Knauf PA; Rothstein A
    Biochim Biophys Acta; 1978 Sep; 515(3):239-302. PubMed ID: 29666
    [No Abstract]   [Full Text] [Related]  

  • 12. Molecular basis of human band-3 mutation associated with increased anion transport.
    Kay MM; Bosman G; Johnson RC; Poulin J; Lawrence C; Goodman J
    Exp Clin Immunogenet; 1994; 11(4):209-21. PubMed ID: 7857667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of control of erythrocyte shape: a possible relationship to band 3.
    Wong P
    J Theor Biol; 1994 Nov; 171(2):197-205. PubMed ID: 7844997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Band 3 (AE1, SLC4A1)-mediated transport of stilbenedisulfonates. I: Functional identification of the proton-activated stilbenedisulfonate influx site.
    Salhany JM; Cordes KS; Sloan RL
    Blood Cells Mol Dis; 2006; 37(3):137-48. PubMed ID: 17000124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloride-sulphate exchange chemically measured in human erythrocyte ghosts.
    Romano L; Peritore D; Simone E; Sidoti A; Trischitta F; Romano P
    Cell Mol Biol (Noisy-le-grand); 1998 Mar; 44(2):351-5. PubMed ID: 9593586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and mechanism of anion transport in red blood cells.
    Jennings ML
    Annu Rev Physiol; 1985; 47():519-33. PubMed ID: 3922288
    [No Abstract]   [Full Text] [Related]  

  • 17. Kinetic characteristics of the sulfate self-exchange in human red blood cells and red blood cell ghosts.
    Schnell KF; Gerhardt S; Schöppe-Fredenburg A
    J Membr Biol; 1977 Jan; 30(4):319-50. PubMed ID: 14260
    [No Abstract]   [Full Text] [Related]  

  • 18. The carboxyl side chain of glutamate 681 interacts with a chloride binding modifier site that allosterically modulates the dimeric conformational state of band 3 (AE1). Implications for the mechanism of anion/proton cotransport.
    Salhany JM; Sloan RL; Cordes KS
    Biochemistry; 2003 Feb; 42(6):1589-602. PubMed ID: 12578372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Band 3 (AE1, SLC4A1)-mediated transport of stilbenedisulfonates. III: Role of solute and protein structure in proton-activated stilbenedisulfonate influx.
    Salhany JM; Cordes KS; Sloan RL
    Blood Cells Mol Dis; 2006; 37(3):155-63. PubMed ID: 17000125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Control of lateral mobility of band 3 by the cytoskeleton].
    Tsuji A; Ohnishi S
    Rinsho Byori; 1987 Nov; Spec No 74():38-46. PubMed ID: 3334447
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.