These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 6098122)

  • 1. The visual field in normal subjects.
    Egge K
    Acta Ophthalmol Suppl; 1984; 169():1-64. PubMed ID: 6098122
    [No Abstract]   [Full Text] [Related]  

  • 2. Blue-on-yellow visual field and retinal nerve fiber layer in ocular hypertension and glaucoma.
    Teesalu P; Airaksinen PJ; Tuulonen A
    Ophthalmology; 1998 Nov; 105(11):2077-81. PubMed ID: 9818609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical modelling of the central 10-degree visual field in short-wavelength automated perimetry.
    Cubbidge RP; Hosking SL; Embleton S
    Graefes Arch Clin Exp Ophthalmol; 2002 Aug; 240(8):650-7. PubMed ID: 12192459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Correlation between glaucomatous hemifield scotomas in white-on-white perimetry and blue-on-yellow perimetry using the oculus twinfield perimeter].
    Denk PO; Markovic M; Knorr M
    Klin Monbl Augenheilkd; 2004 Feb; 221(2):109-15. PubMed ID: 14986209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-dependent normative values for differential luminance sensitivity in automated static perimetry using the Octopus 101.
    Hermann A; Paetzold J; Vonthein R; Krapp E; Rauscher S; Schiefer U
    Acta Ophthalmol; 2008 Jun; 86(4):446-55. PubMed ID: 18070224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of saccadic vector optokinetic perimetry: a method of automated static perimetry for children using eye tracking.
    Murray IC; Fleck BW; Brash HM; Macrae ME; Tan LL; Minns RA
    Ophthalmology; 2009 Oct; 116(10):2017-26. PubMed ID: 19560207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Variability of sensitivity thresholds in short-wavelength automated perimetry (SWAP) in the central vision field].
    Polo Llorens V; Larrosa Poves JM; Pinilla Lozano I; Pablo Júlvez L; Rojo Aragües A; Cuevas Andrés R; Ruiz Moreno O; Honrubia López FM
    Arch Soc Esp Oftalmol; 2000 Feb; 75(2):85-90. PubMed ID: 11151125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Normal age-related sensitivity loss for a variety of visual functions throughout the visual field.
    Gardiner SK; Johnson CA; Spry PG
    Optom Vis Sci; 2006 Jul; 83(7):438-43. PubMed ID: 16840869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The normal age-corrected and reaction time-corrected isopter derived by semi-automated kinetic perimetry.
    Vonthein R; Rauscher S; Paetzold J; Nowomiejska K; Krapp E; Hermann A; Sadowski B; Chaumette C; Wild JM; Schiefer U
    Ophthalmology; 2007 Jun; 114(6):1065-72. PubMed ID: 17331580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Component perimetry: a fast method to detect visual field defects caused by brain lesions.
    Bachmann G; Fahle M
    Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):2870-86. PubMed ID: 10967040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A study on retinal light sensitivity of normal human visual fields].
    Yu MB; Zhou WB; Ye TC
    Zhonghua Yan Ke Za Zhi; 1994 Sep; 30(5):341-4. PubMed ID: 7805534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Ocular carbon dioxide reactivity in retinitis pigmentosa. Perimetry results].
    Tacke CM; Pillunat LE; Lang GK
    Ophthalmologe; 1993 Oct; 90(5):510-4. PubMed ID: 8219642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Perimetric probability maps for short wavelength automated perimetry].
    Polo Llorens V ; Larrosa Poves JM ; Pinilla Lozano I ; Pablo Júlvez L ; Honrubia López FM
    Arch Soc Esp Oftalmol; 2000 Jun; 75(6):403-8. PubMed ID: 11151185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different strategies for Humphrey automated perimetry: FASTPAC, SITA standard and SITA fast in normal subjects and glaucoma patients.
    Roggen X; Herman K; Van Malderen L; Devos M; Spileers W
    Bull Soc Belge Ophtalmol; 2001; (279):23-33. PubMed ID: 11344712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of blue-on-yellow visual fields with scanning confocal laser optic disc measurements.
    Teesalu P; Vihanninjoki K; Airaksinen PJ; Tuulonen A; Läärä E
    Invest Ophthalmol Vis Sci; 1997 Nov; 38(12):2452-9. PubMed ID: 9375562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency doubling technology perimetry abnormalities as predictors of glaucomatous visual field loss.
    Medeiros FA; Sample PA; Weinreb RN
    Am J Ophthalmol; 2004 May; 137(5):863-71. PubMed ID: 15126151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Preliminary study on normal values of blue-on-yellow perimetry in central thirty degrees].
    Yu MB; Li JR; Lin XC; Huang WM
    Zhonghua Yan Ke Za Zhi; 2009 Oct; 45(10):903-7. PubMed ID: 20137451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Contribution to the study of static perimetry (results with normal persons)].
    Weekers JF
    Arch Ophtalmol Rev Gen Ophtalmol; 1969 Jan; 29(1):47-56. PubMed ID: 4237744
    [No Abstract]   [Full Text] [Related]  

  • 19. Fatigue effect within 10 degrees visual field in automated perimetry.
    Fujimoto N; Adachi-Usami E
    Ann Ophthalmol; 1993 Apr; 25(4):142-4. PubMed ID: 8484656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rarebit perimetry in normal subjects: test-retest variability, learning effect, normative range, influence of optical defocus, and cataract extraction.
    Salvetat ML; Zeppieri M; Parisi L; Brusini P
    Invest Ophthalmol Vis Sci; 2007 Nov; 48(11):5320-31. PubMed ID: 17962489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.