BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 6098266)

  • 1. Reactivity of hydroxyl and hydroxyl-like radicals discriminated by release of thiobarbituric acid-reactive material from deoxy sugars, nucleosides and benzoate.
    Gutteridge JM
    Biochem J; 1984 Dec; 224(3):761-7. PubMed ID: 6098266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferrous-salt-promoted damage to deoxyribose and benzoate. The increased effectiveness of hydroxyl-radical scavengers in the presence of EDTA.
    Gutteridge JM
    Biochem J; 1987 May; 243(3):709-14. PubMed ID: 3117032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superoxide dismutase and Fenton chemistry. Reaction of ferric-EDTA complex and ferric-bipyridyl complex with hydrogen peroxide without the apparent formation of iron(II).
    Gutteridge JM; Maidt L; Poyer L
    Biochem J; 1990 Jul; 269(1):169-74. PubMed ID: 2165392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen peroxide-mediated degradation of protein: different oxidation modes of copper- and iron-dependent hydroxyl radicals on the degradation of albumin.
    Kocha T; Yamaguchi M; Ohtaki H; Fukuda T; Aoyagi T
    Biochim Biophys Acta; 1997 Feb; 1337(2):319-26. PubMed ID: 9048910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxyl radical formation from the auto-reduction of a ferric citrate complex.
    Gutteridge JM
    Free Radic Biol Med; 1991; 11(4):401-6. PubMed ID: 1665838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ability of scavengers to distinguish OH. production in the iron-catalyzed Haber-Weiss reaction: comparison of four assays for OH.
    Winterbourn CC
    Free Radic Biol Med; 1987; 3(1):33-9. PubMed ID: 3040537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of pH on OH. scavenger inhibition of damage to deoxyribose by Fenton reaction.
    Tadolini B; Cabrini L
    Mol Cell Biochem; 1990 May; 94(2):97-104. PubMed ID: 2165214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cobalt(II) ion as a promoter of hydroxyl radical and possible 'crypto-hydroxyl' radical formation under physiological conditions. Differential effects of hydroxyl radical scavengers.
    Moorhouse CP; Halliwell B; Grootveld M; Gutteridge JM
    Biochim Biophys Acta; 1985 Dec; 843(3):261-8. PubMed ID: 2998477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacitracin and a bacitracin-zinc complex damage DNA and carbohydrate in the presence of iron and copper salts.
    Quinlan GJ; Gutteridge JM
    Free Radic Res Commun; 1989; 7(1):37-44. PubMed ID: 2509300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of microsomal oxidation of alcohols and of hydroxyl-radical-scavenging agents by the iron-chelating agent desferrioxamine.
    Cederbaum AI; Dicker E
    Biochem J; 1983 Jan; 210(1):107-13. PubMed ID: 6303308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of the competitive degradation of deoxyribose and other biomolecules by hydroxyl radicals produced by the Fenton reaction.
    Zaho MJ; Jung L; Tanielian C; Mechin R
    Free Radic Res; 1994 Jun; 20(6):345-63. PubMed ID: 8081451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper + zinc and manganese superoxide dismutases inhibit deoxyribose degradation by the superoxide-driven Fenton reaction at two different stages. Implications for the redox states of copper and manganese.
    Gutteridge JM; Bannister JV
    Biochem J; 1986 Feb; 234(1):225-8. PubMed ID: 3010953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen radical damage to DNA by rifamycin SV and copper ions.
    Quinlan GJ; Gutteridge JM
    Biochem Pharmacol; 1987 Nov; 36(21):3629-33. PubMed ID: 2823829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of hemoglobin, hematin, and iron on neutrophil inactivation in superoxide generating systems.
    Kim YM; Yamazaki I; Piette LH
    Arch Biochem Biophys; 1994 Mar; 309(2):308-14. PubMed ID: 8135543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil particulate fractions, and an enzymatic generating system.
    Ambruso DR; Johnston RB
    J Clin Invest; 1981 Feb; 67(2):352-60. PubMed ID: 6780607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid peroxidation initiated by superoxide-dependent hydroxyl radicals using complexed iron and hydrogen peroxide.
    Gutteridge JM
    FEBS Lett; 1984 Jul; 172(2):245-9. PubMed ID: 6086389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The generation of hydroxyl and alkoxyl radicals from the interaction of ferrous bipyridyl with peroxides.
    Winston GW; Harvey W; Berl L; Cederbaum AI
    Biochem J; 1983 Nov; 216(2):415-21. PubMed ID: 6318737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deoxyribose degradation catalyzed by Fe(III)-EDTA: kinetic aspects and potential usefulness for submicromolar iron measurements.
    Hermes-Lima M; Wang EM; Schulman HM; Storey KB; Ponka P
    Mol Cell Biochem; 1994 Aug; 137(1):65-73. PubMed ID: 7845380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals.
    Halliwell B; Gutteridge JM
    FEBS Lett; 1981 Jun; 128(2):347-52. PubMed ID: 6266877
    [No Abstract]   [Full Text] [Related]  

  • 20. Characteristics of the active oxygen in covalent binding of the pesticide methoxychlor to hepatic microsomal proteins.
    Kupfer D; Bulger WH; Nanni FJ
    Biochem Pharmacol; 1986 Aug; 35(16):2775-80. PubMed ID: 3017361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.