BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 6098266)

  • 21. Comparative sugar degradation by (OH). produced by the iron-driven Fenton reaction and gamma radiolysis.
    Franzini E; Sellak H; Hakim J; Pasquier C
    Arch Biochem Biophys; 1994 Mar; 309(2):261-5. PubMed ID: 8135536
    [TBL] [Abstract][Full Text] [Related]  

  • 22. L-carnosine (beta-alanyl-L-histidine) and carcinine (beta-alanylhistamine) act as natural antioxidants with hydroxyl-radical-scavenging and lipid-peroxidase activities.
    Babizhayev MA; Seguin MC; Gueyne J; Evstigneeva RP; Ageyeva EA; Zheltukhina GA
    Biochem J; 1994 Dec; 304 ( Pt 2)(Pt 2):509-16. PubMed ID: 7998987
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ascorbate-dependent formation of hydroxyl radicals in the presence of iron chelates.
    Prabhu HR; Krishnamurthy S
    Indian J Biochem Biophys; 1993 Oct; 30(5):289-92. PubMed ID: 8144174
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ferrous ion-EDTA-stimulated phospholipid peroxidation. A reaction changing from alkoxyl-radical- to hydroxyl-radical-dependent initiation.
    Gutteridge JM
    Biochem J; 1984 Dec; 224(3):697-701. PubMed ID: 6441569
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydroxyl-radical production in physiological reactions. A novel function of peroxidase.
    Chen SX; Schopfer P
    Eur J Biochem; 1999 Mar; 260(3):726-35. PubMed ID: 10103001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Factors that influence the deoxyribose oxidation assay for Fenton reaction products.
    Winterbourn CC
    Free Radic Biol Med; 1991; 11(4):353-60. PubMed ID: 1665835
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Antioxidant and prooxidant properties of the ascorbic acid, dihydroquercetine and mexidol in the radical reactions induced by the ionizing radiation and chemical reagents].
    Riabchenko NI; Riabchenko VI; Ivannik BP; Dzikovskaia LA; Sin'kova RV; Grosheva IP; Degtiareva ES; Ivanova TI
    Radiats Biol Radioecol; 2010; 50(2):186-94. PubMed ID: 20464967
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydroxyl-radical-induced iron-catalysed degradation of 2-deoxyribose. Quantitative determination of malondialdehyde.
    Cheeseman KH; Beavis A; Esterbauer H
    Biochem J; 1988 Jun; 252(3):649-53. PubMed ID: 3421915
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Catalase enhances damage to DNA by bleomycin-iron(II): the role of hydroxyl radicals.
    Gutteridge JM; Beard AP; Quinlan GJ
    Biochem Int; 1985 Mar; 10(3):441-9. PubMed ID: 2409975
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The deoxyribose method: a simple "test-tube" assay for determination of rate constants for reactions of hydroxyl radicals.
    Halliwell B; Gutteridge JM; Aruoma OI
    Anal Biochem; 1987 Aug; 165(1):215-9. PubMed ID: 3120621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of the iron-catalysed formation of hydroxyl radicals from superoxide and of lipid peroxidation by desferrioxamine.
    Gutteridge JM; Richmond R; Halliwell B
    Biochem J; 1979 Nov; 184(2):469-72. PubMed ID: 230833
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide.
    Hogg N; Darley-Usmar VM; Wilson MT; Moncada S
    Biochem J; 1992 Jan; 281 ( Pt 2)(Pt 2):419-24. PubMed ID: 1310595
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antioxidant and pro-oxidant activities of p-hydroxybenzyl alcohol and vanillin: effects on free radicals, brain peroxidation and degradation of benzoate, deoxyribose, amino acids and DNA.
    Liu J; Mori A
    Neuropharmacology; 1993 Jul; 32(7):659-69. PubMed ID: 7689708
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidative damage to DNA and deoxyribose by beta-lactam antibiotics in the presence of iron and copper salts.
    Quinlan GJ; Gutteridge JM
    Free Radic Res Commun; 1988; 5(3):149-58. PubMed ID: 3234862
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Complex-formation and reduction of ferric iron by 2-oxo-4-thiomethylbutyric acid, and the production of hydroxyl radicals.
    Winston GW; Eibschutz OM; Strekas T; Cederbaum AI
    Biochem J; 1986 Apr; 235(2):521-9. PubMed ID: 3741403
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidation of salicylates by stimulated granulocytes: evidence that these drugs act as free radical scavengers in biological systems.
    Sagone AL; Husney RM
    J Immunol; 1987 Apr; 138(7):2177-83. PubMed ID: 3031158
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of ferrous ions on the monophenolase activity of tyrosinase.
    Ros JR; Rodríguez-López JN; García-Cánovas F
    Biochim Biophys Acta; 1993 Jun; 1163(3):303-8. PubMed ID: 8507669
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Copper salt-dependent hydroxyl radical formation. Damage to proteins acting as antioxidants.
    Gutteridge JM; Wilkins S
    Biochim Biophys Acta; 1983 Aug; 759(1-2):38-41. PubMed ID: 6192847
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monoamine metabolism provides an antioxidant defense in the brain against oxidant- and free radical-induced damage.
    Liu J; Mori A
    Arch Biochem Biophys; 1993 Apr; 302(1):118-27. PubMed ID: 7682389
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of lysozyme inactivation and degradation by iron.
    Sellak H; Franzini E; Hakim J; Pasquier C
    Arch Biochem Biophys; 1992 Nov; 299(1):172-8. PubMed ID: 1332614
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.