These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 6098341)

  • 1. Bicuculline epileptogenesis in the rat.
    Campbell AM; Holmes O
    Brain Res; 1984 Dec; 323(2):239-46. PubMed ID: 6098341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Penicillin epilepsy in the rat: the responses of different layers of the cortex cerebri.
    Lockton JW; Holmes O
    Brain Res; 1983 Jan; 258(1):79-89. PubMed ID: 24010166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of penicillin epileptogenesis in rat somatosensory and motor cortex.
    Holmes O; Wallace MN; Campbell AM
    Q J Exp Physiol; 1987 Oct; 72(4):439-52. PubMed ID: 2827221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of bicuculline methiodide on fast (>200 Hz) electrical oscillations in rat somatosensory cortex.
    Jones MS; Barth DS
    J Neurophysiol; 2002 Aug; 88(2):1016-25. PubMed ID: 12163550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of GABAergic inhibition alters subthreshold input in neurons in forepaw barrel subfield (FBS) in rat first somatosensory cortex (SI) after digit stimulation.
    Li CX; Callaway JC; Waters RS
    Exp Brain Res; 2002 Aug; 145(4):411-28. PubMed ID: 12172653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of penicillin- and bicuculline-induced epileptiform discharges during development of striate cortex in rabbits.
    Campbell BG; Ostrach LH; Crabtree JW; Chow KL
    Brain Res; 1984 Jul; 317(1):125-8. PubMed ID: 6467027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GABAA-mediated inhibition and in vitro epileptogenesis in the human neocortex.
    Avoli M; Louvel J; Drapeau C; Pumain R; Kurcewicz I
    J Neurophysiol; 1995 Feb; 73(2):468-84. PubMed ID: 7760112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propagation dynamics of epileptiform activity acutely induced by bicuculline in the hippocampal-parahippocampal region of the isolated Guinea pig brain.
    Uva L; Librizzi L; Wendling F; de Curtis M
    Epilepsia; 2005 Dec; 46(12):1914-25. PubMed ID: 16393157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition.
    Chagnac-Amitai Y; Connors BW
    J Neurophysiol; 1989 Apr; 61(4):747-58. PubMed ID: 2542471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular and synaptic physiology and epileptogenesis of developing rat neocortical neurons in vitro.
    Kriegstein AR; Suppes T; Prince DA
    Brain Res; 1987 Aug; 431(2):161-71. PubMed ID: 3040188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms underlying the enhancement of excitatory synaptic transmission in basolateral amygdala neurons of the kindling rat.
    Shoji Y; Tanaka E; Yamamoto S; Maeda H; Higashi H
    J Neurophysiol; 1998 Aug; 80(2):638-46. PubMed ID: 9705457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epileptiform burst activity induced by potassium in the hippocampus and its regulation by GABA-mediated inhibition.
    Korn SJ; Giacchino JL; Chamberlin NL; Dingledine R
    J Neurophysiol; 1987 Jan; 57(1):325-40. PubMed ID: 3559679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blockade of GABAergic inhibition reveals reordered cortical somatotopic maps in rats that sustained neonatal forelimb removal.
    Lane RD; Killackey HP; Rhoades RW
    J Neurophysiol; 1997 May; 77(5):2723-35. PubMed ID: 9163388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition from GABAergic to glycinergic synaptic transmission in newly formed spinal networks.
    Gao BX; Stricker C; Ziskind-Conhaim L
    J Neurophysiol; 2001 Jul; 86(1):492-502. PubMed ID: 11431527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Normotopic cortex is the major contributor to epilepsy in experimental double cortex.
    Petit LF; Jalabert M; Buhler E; Malvache A; Peret A; Chauvin Y; Watrin F; Represa A; Manent JB
    Ann Neurol; 2014 Sep; 76(3):428-42. PubMed ID: 25074818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phases in the development of a penicillin epileptiform focus in rat neocortex.
    Bashir ZI; Holmes O
    Exp Brain Res; 1993; 96(2):319-27. PubMed ID: 8270024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative effects of GABA and bicuculline methiodide on receptive field properties of neurons in real and simulated whisker barrels.
    Kyriazi HT; Carvell GE; Brumberg JC; Simons DJ
    J Neurophysiol; 1996 Feb; 75(2):547-60. PubMed ID: 8714634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of spontaneous and evoked epileptiform activity in three in vitro epilepsy models.
    Gulyás-Kovács A; Dóczi J; Tarnawa I; Détári L; Banczerowski-Pelyhe I; Világi I
    Brain Res; 2002 Aug; 945(2):174-80. PubMed ID: 12126879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional and pharmacological properties of GABA-mediated inhibition in the human neocortex.
    Avoli M; Hwa G; Louvel J; Kurcewicz I; Pumain R; Lacaille JC
    Can J Physiol Pharmacol; 1997 May; 75(5):526-34. PubMed ID: 9250388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epileptiform activity induced by changes in extracellular potassium in hippocampus.
    Rutecki PA; Lebeda FJ; Johnston D
    J Neurophysiol; 1985 Nov; 54(5):1363-74. PubMed ID: 2416891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.