These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 6098343)
1. Posttetanic potentiation in strong and weak neuromuscular junctions: physiological differences caused by a differential Ca2+-influx. Pawson PA; Grinnell AD Brain Res; 1984 Dec; 323(2):311-5. PubMed ID: 6098343 [TBL] [Abstract][Full Text] [Related]
2. Physiological differences between strong and weak frog neuromuscular junctions: a study involving tetanic and posttetanic potentiation. Pawson PA; Grinnell AD J Neurosci; 1990 Jun; 10(6):1769-78. PubMed ID: 2113085 [TBL] [Abstract][Full Text] [Related]
3. Changes in miniature endplate potential frequency during repetitive nerve stimulation in the presence of Ca2+, Ba2+, and Sr2+ at the frog neuromuscular junction. Zengel JE; Magleby KL J Gen Physiol; 1981 May; 77(5):503-29. PubMed ID: 6262429 [TBL] [Abstract][Full Text] [Related]
4. Oscillation period of MEPP frequency at frog neuromuscular junctions is inversely correlated with release efficacy and independent of acute Ca2+ loading. Pawson PA; Grinnell AD Proc R Soc Lond B Biol Sci; 1989 Sep; 237(1289):489-99. PubMed ID: 2573902 [TBL] [Abstract][Full Text] [Related]
5. Dependence of spontaneous release at frog junctions on synaptic strength, external calcium and terminal length. Grinnell AD; Pawson PA J Physiol; 1989 Nov; 418():397-410. PubMed ID: 2576068 [TBL] [Abstract][Full Text] [Related]
6. Ionic basis of tetanic and post-tetanic potentiation at a mammalian neuromuscular junction. Nussinovitch I; Rahamimoff R J Physiol; 1988 Feb; 396():435-55. PubMed ID: 2457692 [TBL] [Abstract][Full Text] [Related]
7. Effects of lead on neuromuscular transmission in the frog. Manalis RS; Cooper GP; Pomeroy SL Brain Res; 1984 Feb; 294(1):95-109. PubMed ID: 6320979 [TBL] [Abstract][Full Text] [Related]
8. Cation dependence of posttetanic potentiation of neuromuscular transmission. Misler S; Falke L; Martin S Am J Physiol; 1987 Jan; 252(1 Pt 1):C55-62. PubMed ID: 3492922 [TBL] [Abstract][Full Text] [Related]
9. Measurement of quantal secretion induced by ouabain and its correlation with depletion of synaptic vesicles. Haimann C; Torri-Tarelli F; Fesce R; Ceccarelli B J Cell Biol; 1985 Nov; 101(5 Pt 1):1953-65. PubMed ID: 3932368 [TBL] [Abstract][Full Text] [Related]
10. Effects of phorbol ester on spontaneous transmitter release at frog neuromuscular junction. Eusebi F; Molinaro M; Caratsch CG Pflugers Arch; 1986 Feb; 406(2):181-3. PubMed ID: 2870468 [TBL] [Abstract][Full Text] [Related]
11. Synaptic efficacy at singly- and dually-innervated neuromuscular junctions in the frog, Rana pipiens. Weakly JN; Yao YM Brain Res; 1983 Aug; 273(2):319-23. PubMed ID: 6311352 [TBL] [Abstract][Full Text] [Related]
12. Nickel and calcium ions modify the characteristics of the acetylcholine receptor-channel complex at the frog neuromuscular junction. Magleby KL; Weinstock MM J Physiol; 1980 Feb; 299():203-18. PubMed ID: 6247480 [TBL] [Abstract][Full Text] [Related]
13. A study of tetanic and post-tetanic potentiation of miniature end-plate potentials at the frog neuromuscular junction. Lev-Tov A; Rahamimoff R J Physiol; 1980 Dec; 309():247-73. PubMed ID: 6973021 [TBL] [Abstract][Full Text] [Related]
14. Effects of two synaptic activators, calcium and ethanol, on MEPP distribution in time. Velussi C; Danieli-Betto D; Boschiero R Am J Physiol; 1979 Nov; 237(5):C264-8. PubMed ID: 495743 [TBL] [Abstract][Full Text] [Related]
15. Correlation between quantal secretion and vesicle loss at the frog neuromuscular junction. Hurlbut WP; Iezzi N; Fesce R; Ceccarelli B J Physiol; 1990 Jun; 425():501-26. PubMed ID: 2120425 [TBL] [Abstract][Full Text] [Related]
16. Modulation of Ca(2+)-dependent and Ca(2+)-independent miniature endplate potentials by phorbol ester and adenosine in frog. Searl TJ; Silinsky EM Br J Pharmacol; 2005 Aug; 145(7):954-62. PubMed ID: 15880138 [TBL] [Abstract][Full Text] [Related]
17. Post-tetanic potentiation of acetylcholine release at the frog neuromuscular junction develops after stimulation in Ca2+-free solutions. Misler S; Hurlbut WP Proc Natl Acad Sci U S A; 1983 Jan; 80(1):315-9. PubMed ID: 6296872 [TBL] [Abstract][Full Text] [Related]
18. Equivalence of Ca2+ and Sr2+ in transmitter release from K+-depolarised nerve terminals. Mellow AM Nature; 1979 Nov; 282(5734):84-5. PubMed ID: 41184 [No Abstract] [Full Text] [Related]
19. The effects of pH changes on the frequency of miniature end-plate potentials at the frog neuromuscular junction. Cohen I; Van Der Kloot W J Physiol; 1976 Nov; 262(2):401-14. PubMed ID: 11340 [TBL] [Abstract][Full Text] [Related]
20. Non-uniform distribution of miniature endplate potential amplitudes along the length of the frog neuromuscular junction. Robitaille R; Tremblay JP; Grenon G Neurosci Lett; 1987 Feb; 74(2):187-92. PubMed ID: 3494962 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]