BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 6098373)

  • 1. Transport and control of Ca2+ by pigeon erythrocytes. I. Survey of some cell responses to a range of A23187 doses in the presence of Ca2+.
    Lee JW; Vidaver GA
    Cell Calcium; 1984 Dec; 5(6):501-24. PubMed ID: 6098373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport and control of Ca2+ by pigeon erythrocytes. II. Evidence against a simple feedback control of cell Ca2+ and evidence for the involvement of more than one pool.
    Lee JW; Vidaver GA
    Cell Calcium; 1984 Dec; 5(6):525-36. PubMed ID: 6098374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport and control of Ca2+ by pigeon erythrocytes. III. A 'paradoxical' expulsion of Ca2+ induced by a low dose of A23187 at 0 degrees C.
    Lee JW; Vidaver GA
    Biochim Biophys Acta; 1987 Oct; 903(2):257-64. PubMed ID: 2443171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of intracellular calcium on the sodium pump of human red cells.
    Brown AM; Lew VL
    J Physiol; 1983 Oct; 343():455-93. PubMed ID: 6315922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of calcium in the regulation of sugar transport in the avian erythrocyte: effects of the calcium ionophore, A23187.
    Bihler I; Charles P; Sawh PC
    Cell Calcium; 1982 Aug; 3(3):243-62. PubMed ID: 6814760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of intracellular calcium ions on adrenaline-stimulated adenosine 3':5'-cyclic monophosphate concentrations in pigeon erythrocytes, studied by using the ionophore A23187.
    Campbell AK; Siddle K
    Biochem J; 1976 Aug; 158(2):211-21. PubMed ID: 186033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytoplasmic calcium buffers in intact human red cells.
    Tiffert T; Lew VL
    J Physiol; 1997 Apr; 500 ( Pt 1)(Pt 1):139-54. PubMed ID: 9097939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+-activated Na+ fluxes in human red cells. Amiloride sensitivity.
    Escobales N; Canessa M
    J Biol Chem; 1985 Oct; 260(22):11914-23. PubMed ID: 3930487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of deoxygenation on active and passive Ca2+ transport and cytoplasmic Ca2+ buffering in normal human red cells.
    Tiffert T; Etzion Z; Bookchin RM; Lew VL
    J Physiol; 1993 May; 464():529-44. PubMed ID: 8229816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separate, Ca2+-activated K+ and Cl- transport pathways in Ehrlich ascites tumor cells.
    Hoffmann EK; Lambert IH; Simonsen LO
    J Membr Biol; 1986; 91(3):227-44. PubMed ID: 2427725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of ABH blood group antigens in the stimulation of a DIDS-sensitive Ca2+ influx pathway in human erythrocytes by Ulex europaeus agglutinin I and a monoclonal anti A1 antibody.
    Engelmann B; Schumacher U; Duhm J
    Biochim Biophys Acta; 1991 Feb; 1091(3):261-9. PubMed ID: 2001409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive K+-Cl- fluxes in low-K+ sheep erythrocytes: modulation by A23187 and bivalent cations.
    Lauf PK
    Am J Physiol; 1985 Sep; 249(3 Pt 1):C271-8. PubMed ID: 3929615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium transport mechanisms in dog red blood cells studied from measurements of initial flux rates.
    Altamirano AA; Beaugé L
    Cell Calcium; 1985 Dec; 6(6):503-25. PubMed ID: 3937600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Mg-ATP-dependent Ca2+ transport in cat pancreatic microsomes.
    Kribben A; Tyrakowski T; Schulz I
    Am J Physiol; 1983 May; 244(5):G480-90. PubMed ID: 6133452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of properties of the Ca2+ influx and of the Ca2+-activated K+ efflux (Gárdos effect) in vanadate-treated and ATP-depleted human red blood cells.
    Kaiserová K; Lakatos B; Peterajová E; Orlický J; Varecka L
    Gen Physiol Biophys; 2002 Dec; 21(4):429-42. PubMed ID: 12693714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of atropine, ouabain, antimycin A, and A23187 on "trigger Ca2+ pool" in exocrine pancreas.
    Stolze H; Schulz I
    Am J Physiol; 1980 Apr; 238(4):G338-48. PubMed ID: 6155080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium transport of Plasmodium chabaudi-infected erythrocytes.
    Tanabe K; Mikkelsen RB; Wallach DF
    J Cell Biol; 1982 Jun; 93(3):680-4. PubMed ID: 6288729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of changes in the rate of ionophore A23187-induced calcium influx on the pump-leak steady-state distribution of calcium in inosine-fed human red cells.
    Tiffert T; Lew VL
    Biochim Biophys Acta; 1986 Aug; 860(2):429-33. PubMed ID: 2427117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of ionophore A23187 with a "masked" Ca2+ binding site in pig and pigeon red cells.
    Henley JM
    Biochem Pharmacol; 1986 Oct; 35(19):3401-3. PubMed ID: 2429663
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of ionophore A23187 upon membrane function and ion movement in human and toad erythrocytes.
    Lake W; Rasmussen H; Goodman DB
    J Membr Biol; 1977 Apr; 32(1-2):93-113. PubMed ID: 404430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.