These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 6098819)
1. A deletion that includes the signal peptidase cleavage site impairs processing, glycosylation, and secretion of cell surface yeast acid phosphatase. Haguenauer-Tsapis R; Hinnen A Mol Cell Biol; 1984 Dec; 4(12):2668-75. PubMed ID: 6098819 [TBL] [Abstract][Full Text] [Related]
2. A deletion that includes the segment coding for the signal peptidase cleavage site delays release of Saccharomyces cerevisiae acid phosphatase from the endoplasmic reticulum. Haguenauer-Tsapis R; Nagy M; Ryter A Mol Cell Biol; 1986 Feb; 6(2):723-9. PubMed ID: 3537693 [TBL] [Abstract][Full Text] [Related]
3. Functional analysis of the signal-sequence processing site of yeast acid phosphatase. Monod M; Haguenauer-Tsapis R; Rauseo-Koenig I; Hinnen A Eur J Biochem; 1989 Jun; 182(2):213-21. PubMed ID: 2500339 [TBL] [Abstract][Full Text] [Related]
4. SEC11 is required for signal peptide processing and yeast cell growth. Böhni PC; Deshaies RJ; Schekman RW J Cell Biol; 1988 Apr; 106(4):1035-42. PubMed ID: 3283143 [TBL] [Abstract][Full Text] [Related]
5. Signal peptide specificity in posttranslational processing of the plant protein phaseolin in Saccharomyces cerevisiae. Cramer JH; Lea K; Schaber MD; Kramer RA Mol Cell Biol; 1987 Jan; 7(1):121-8. PubMed ID: 3031451 [TBL] [Abstract][Full Text] [Related]
6. Residues flanking the COOH-terminal C-region of a model eukaryotic signal peptide influence the site of its cleavage by signal peptidase and the extent of coupling of its co-translational translocation and proteolytic processing in vitro. Nothwehr SF; Hoeltzli SD; Allen KL; Lively MO; Gordon JI J Biol Chem; 1990 Dec; 265(35):21797-803. PubMed ID: 2123875 [TBL] [Abstract][Full Text] [Related]
7. Deletion of the propeptide from human preproapolipoprotein A-II redirects cotranslational processing by signal peptidase. Folz RJ; Gordon JI J Biol Chem; 1986 Nov; 261(31):14752-9. PubMed ID: 3533926 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of precursor maltose-binding protein with proline in the +1 position of the cleavage site interferes with the activity of Escherichia coli signal peptidase I in vivo. Barkocy-Gallagher GA; Bassford PJ J Biol Chem; 1992 Jan; 267(2):1231-8. PubMed ID: 1730647 [TBL] [Abstract][Full Text] [Related]
9. The nucleotide sequence of the yeast PHO5 gene: a putative precursor of repressible acid phosphatase contains a signal peptide. Arima K; Oshima T; Kubota I; Nakamura N; Mizunaga T; Toh-e A Nucleic Acids Res; 1983 Mar; 11(6):1657-72. PubMed ID: 6300772 [TBL] [Abstract][Full Text] [Related]
10. SOM 1, a small new gene required for mitochondrial inner membrane peptidase function in Saccharomyces cerevisiae. Esser K; Pratje E; Michaelis G Mol Gen Genet; 1996 Sep; 252(4):437-45. PubMed ID: 8879245 [TBL] [Abstract][Full Text] [Related]
11. The yeast acid phosphatase can enter the secretory pathway without its N-terminal signal sequence. Silve S; Monod M; Hinnen A; Haguenauer-Tsapis R Mol Cell Biol; 1987 Sep; 7(9):3306-14. PubMed ID: 3313013 [TBL] [Abstract][Full Text] [Related]
12. The effects of deleting the propeptide from human preproapolipoprotein A-I on co-translational translocation and signal peptidase processing. Folz RJ; Gordon JI J Biol Chem; 1987 Dec; 262(35):17221-30. PubMed ID: 3316231 [TBL] [Abstract][Full Text] [Related]
13. Signal peptidase I processed secretory signal sequences: Selection for and against specific amino acids at the second position of mature protein. Zalucki YM; Jennings MP Biochem Biophys Res Commun; 2017 Feb; 483(3):972-977. PubMed ID: 28088521 [TBL] [Abstract][Full Text] [Related]
14. Identification of Treponema pallidum subspecies pallidum genes encoding signal peptides and membrane-spanning sequences using a novel alkaline phosphatase expression vector. Blanco DR; Giladi M; Champion CI; Haake DA; Chikami GK; Miller JN; Lovett MA Mol Microbiol; 1991 Oct; 5(10):2405-15. PubMed ID: 1791755 [TBL] [Abstract][Full Text] [Related]
15. Inefficient membrane targeting, translocation, and proteolytic processing by signal peptidase of a mutant preproparathyroid hormone protein. Karaplis AC; Lim SK; Baba H; Arnold A; Kronenberg HM J Biol Chem; 1995 Jan; 270(4):1629-35. PubMed ID: 7829495 [TBL] [Abstract][Full Text] [Related]
16. A mutation affecting signal peptidase inhibits degradation of an abnormal membrane protein in Saccharomyces cerevisiae. Mullins C; Lu Y; Campbell A; Fang H; Green N J Biol Chem; 1995 Jul; 270(29):17139-47. PubMed ID: 7615509 [TBL] [Abstract][Full Text] [Related]
17. In vitro studies on the translocation of acid phosphatase into the endoplasmic reticulum of the yeast Saccharomyces cerevisiae. Krebs HO; Hoffschulte HK; Müller M Eur J Biochem; 1989 May; 181(2):323-9. PubMed ID: 2653826 [TBL] [Abstract][Full Text] [Related]
18. Uncoupling of co-translational translocation from signal peptidase processing in a mutant rat preapolipoprotein-A-IV with a deletion that includes the COOH-terminal region of its signal peptide. Nothwehr SF; Folz RJ; Gordon JI J Biol Chem; 1989 Mar; 264(8):4642-7. PubMed ID: 2647742 [TBL] [Abstract][Full Text] [Related]
19. Structural features in the NH2-terminal region of a model eukaryotic signal peptide influence the site of its cleavage by signal peptidase. Nothwehr SF; Gordon JI J Biol Chem; 1990 Oct; 265(28):17202-8. PubMed ID: 2120214 [TBL] [Abstract][Full Text] [Related]
20. Structural analysis of the two tandemly repeated acid phosphatase genes in yeast. Bajwa W; Meyhack B; Rudolph H; Schweingruber AM; Hinnen A Nucleic Acids Res; 1984 Oct; 12(20):7721-39. PubMed ID: 6093051 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]