BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6098857)

  • 1. Tridimensional distribution of markers of neurotransmitters within the "accumbens area" of normal human brains.
    Kwak S; Kanazawa I; Sugita H; Toyokura Y
    Neuroscience; 1984 Nov; 13(3):717-31. PubMed ID: 6098857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mosaic distribution of phosphate-activated glutaminase-like immunoreactivity in the rat striatum.
    Kaneko T; Mizuno N
    Neuroscience; 1992 Jul; 49(2):329-45. PubMed ID: 1436471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The distribution and origin of glutamate decarboxylase and choline acetyltransferase in ventral pallidum and other basal forebrain regions.
    Walaas I; Fonnum F
    Brain Res; 1979 Nov; 177(2):325-36. PubMed ID: 497834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GABAergic and cholinergic basal forebrain and preoptic-anterior hypothalamic projections to the mediodorsal nucleus of the thalamus in the cat.
    Gritti I; Mariotti M; Mancia M
    Neuroscience; 1998 Jul; 85(1):149-78. PubMed ID: 9607710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of surgical and chemical lesions on neurotransmitter candidates in the nucleus accumbens of the rat.
    Walaas I; Fonnum F
    Neuroscience; 1979; 4(2):209-16. PubMed ID: 34123
    [No Abstract]   [Full Text] [Related]  

  • 6. The distribution and compartmental organization of the cholinergic neurons in nucleus accumbens of the rat.
    Meredith GE; Blank B; Groenewegen HJ
    Neuroscience; 1989; 31(2):327-45. PubMed ID: 2797439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural grafting in a rat model of Huntington's disease: progressive neurochemical changes after neostriatal ibotenate lesions and striatal tissue grafting.
    Isacson O; Brundin P; Gage FH; Björklund A
    Neuroscience; 1985 Dec; 16(4):799-817. PubMed ID: 2936982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organotypic slice cultures of the rat striatum--I. A histochemical and immunocytochemical study of acetylcholinesterase, choline acetyltransferase, glutamate decarboxylase and GABA.
    Ostergaard K
    Neuroscience; 1993 Apr; 53(3):679-93. PubMed ID: 8487950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possible changes in striatal and limbic cholinergic systems in schizophrenia.
    McGeer PL; McGeer EG
    Arch Gen Psychiatry; 1977 Nov; 34(11):1319-23. PubMed ID: 45482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping of the distribution of high affinity choline uptake and choline acetyltransferase in the striatum.
    Takano Y; Kohjimoto Y; Uchimura K; Kamiya H
    Brain Res; 1980 Aug; 194(2):583-7. PubMed ID: 7388635
    [No Abstract]   [Full Text] [Related]  

  • 11. Changes in choline acetyltransferase, glutamic acid decarboxylase, high-affinity glutamate uptake and dopaminergic activity induced by kainic acid lesion of the thalamostriatal neurons.
    Nieoullon A; Scarfone E; Kerkerian L; Errami M; Dusticier N
    Neurosci Lett; 1985 Aug; 58(3):299-304. PubMed ID: 2864669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hippocampal and midline thalamic fibers and terminals in relation to the choline acetyltransferase-immunoreactive neurons in nucleus accumbens of the rat: a light and electron microscopic study.
    Meredith GE; Wouterlood FG
    J Comp Neurol; 1990 Jun; 296(2):204-21. PubMed ID: 2358532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of kainic acid injections on guanylate cyclase activity in the rat caudatoputamen, nucleus accumbens and septum.
    Walaas I
    J Neurochem; 1981 Jan; 36(1):233-41. PubMed ID: 6109755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurochemical changes following kainic acid lesions of the nucleus accumbens: implications for a GABAergic accumbal-ventral tegmental pathway.
    Waddington JL; Cross AJ
    Life Sci; 1978 Mar; 22(11):1011-4. PubMed ID: 25363
    [No Abstract]   [Full Text] [Related]  

  • 15. Microtopography of tyrosine hydroxylase, glutamic acid decarboxylase, and choline acetyltransferase in the substantia nigra and ventral tegmental area of control and Parkinsonian brains.
    Javoy-Agid F; Ploska A; Agid Y
    J Neurochem; 1981 Nov; 37(5):1218-27. PubMed ID: 6117604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The laminar distribution of glutamate decarboxylase and choline acetyltransferase in the adult and developing visual cortex of the rat.
    McDonald JK; Speciale SG; Parnavelas JG
    Neuroscience; 1987 Jun; 21(3):825-32. PubMed ID: 3627436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of the localization of choline acetyltransferase and glutamate decarboxylase immunoreactivity in rat cerebral cortex.
    Brady DR; Vaughn JE
    Neuroscience; 1988 Mar; 24(3):1009-26. PubMed ID: 3380294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of glutamate decarboxylase, choline acetyltransferase, and DOPA decarboxylase in mesolimbic structures.
    Fonnum F; Iversen E; Walaas I
    Adv Biochem Psychopharmacol; 1977; 16():417-21. PubMed ID: 302083
    [No Abstract]   [Full Text] [Related]  

  • 19. Increased brain dopamine and reduced glutamic acid decarboxylase and choline acetyl transferase activity in schizophrenia and related psychoses.
    Bird ED; Spokes EG; Barnes J; MacKay AV; Iversen LL; Shepherd M
    Lancet; 1977 Dec; 2(8049):1157-8. PubMed ID: 73064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical evidence for overlapping neocortical and allocortical glutamate projections to the nucleus accumbens and rostral caudatoputamen in the rat brain.
    Walaas I
    Neuroscience; 1981; 6(3):399-405. PubMed ID: 7219721
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.