These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 6098857)
1. Tridimensional distribution of markers of neurotransmitters within the "accumbens area" of normal human brains. Kwak S; Kanazawa I; Sugita H; Toyokura Y Neuroscience; 1984 Nov; 13(3):717-31. PubMed ID: 6098857 [TBL] [Abstract][Full Text] [Related]
2. Mosaic distribution of phosphate-activated glutaminase-like immunoreactivity in the rat striatum. Kaneko T; Mizuno N Neuroscience; 1992 Jul; 49(2):329-45. PubMed ID: 1436471 [TBL] [Abstract][Full Text] [Related]
3. The distribution and origin of glutamate decarboxylase and choline acetyltransferase in ventral pallidum and other basal forebrain regions. Walaas I; Fonnum F Brain Res; 1979 Nov; 177(2):325-36. PubMed ID: 497834 [TBL] [Abstract][Full Text] [Related]
4. GABAergic and cholinergic basal forebrain and preoptic-anterior hypothalamic projections to the mediodorsal nucleus of the thalamus in the cat. Gritti I; Mariotti M; Mancia M Neuroscience; 1998 Jul; 85(1):149-78. PubMed ID: 9607710 [TBL] [Abstract][Full Text] [Related]
5. The effects of surgical and chemical lesions on neurotransmitter candidates in the nucleus accumbens of the rat. Walaas I; Fonnum F Neuroscience; 1979; 4(2):209-16. PubMed ID: 34123 [No Abstract] [Full Text] [Related]
6. The distribution and compartmental organization of the cholinergic neurons in nucleus accumbens of the rat. Meredith GE; Blank B; Groenewegen HJ Neuroscience; 1989; 31(2):327-45. PubMed ID: 2797439 [TBL] [Abstract][Full Text] [Related]
7. Neural grafting in a rat model of Huntington's disease: progressive neurochemical changes after neostriatal ibotenate lesions and striatal tissue grafting. Isacson O; Brundin P; Gage FH; Björklund A Neuroscience; 1985 Dec; 16(4):799-817. PubMed ID: 2936982 [TBL] [Abstract][Full Text] [Related]
8. Organotypic slice cultures of the rat striatum--I. A histochemical and immunocytochemical study of acetylcholinesterase, choline acetyltransferase, glutamate decarboxylase and GABA. Ostergaard K Neuroscience; 1993 Apr; 53(3):679-93. PubMed ID: 8487950 [TBL] [Abstract][Full Text] [Related]
9. Possible changes in striatal and limbic cholinergic systems in schizophrenia. McGeer PL; McGeer EG Arch Gen Psychiatry; 1977 Nov; 34(11):1319-23. PubMed ID: 45482 [TBL] [Abstract][Full Text] [Related]
10. Mapping of the distribution of high affinity choline uptake and choline acetyltransferase in the striatum. Takano Y; Kohjimoto Y; Uchimura K; Kamiya H Brain Res; 1980 Aug; 194(2):583-7. PubMed ID: 7388635 [No Abstract] [Full Text] [Related]
11. Changes in choline acetyltransferase, glutamic acid decarboxylase, high-affinity glutamate uptake and dopaminergic activity induced by kainic acid lesion of the thalamostriatal neurons. Nieoullon A; Scarfone E; Kerkerian L; Errami M; Dusticier N Neurosci Lett; 1985 Aug; 58(3):299-304. PubMed ID: 2864669 [TBL] [Abstract][Full Text] [Related]
12. Hippocampal and midline thalamic fibers and terminals in relation to the choline acetyltransferase-immunoreactive neurons in nucleus accumbens of the rat: a light and electron microscopic study. Meredith GE; Wouterlood FG J Comp Neurol; 1990 Jun; 296(2):204-21. PubMed ID: 2358532 [TBL] [Abstract][Full Text] [Related]
13. The effects of kainic acid injections on guanylate cyclase activity in the rat caudatoputamen, nucleus accumbens and septum. Walaas I J Neurochem; 1981 Jan; 36(1):233-41. PubMed ID: 6109755 [TBL] [Abstract][Full Text] [Related]
14. Neurochemical changes following kainic acid lesions of the nucleus accumbens: implications for a GABAergic accumbal-ventral tegmental pathway. Waddington JL; Cross AJ Life Sci; 1978 Mar; 22(11):1011-4. PubMed ID: 25363 [No Abstract] [Full Text] [Related]
15. Microtopography of tyrosine hydroxylase, glutamic acid decarboxylase, and choline acetyltransferase in the substantia nigra and ventral tegmental area of control and Parkinsonian brains. Javoy-Agid F; Ploska A; Agid Y J Neurochem; 1981 Nov; 37(5):1218-27. PubMed ID: 6117604 [TBL] [Abstract][Full Text] [Related]
16. The laminar distribution of glutamate decarboxylase and choline acetyltransferase in the adult and developing visual cortex of the rat. McDonald JK; Speciale SG; Parnavelas JG Neuroscience; 1987 Jun; 21(3):825-32. PubMed ID: 3627436 [TBL] [Abstract][Full Text] [Related]
17. A comparison of the localization of choline acetyltransferase and glutamate decarboxylase immunoreactivity in rat cerebral cortex. Brady DR; Vaughn JE Neuroscience; 1988 Mar; 24(3):1009-26. PubMed ID: 3380294 [TBL] [Abstract][Full Text] [Related]
18. Localization of glutamate decarboxylase, choline acetyltransferase, and DOPA decarboxylase in mesolimbic structures. Fonnum F; Iversen E; Walaas I Adv Biochem Psychopharmacol; 1977; 16():417-21. PubMed ID: 302083 [No Abstract] [Full Text] [Related]
19. Increased brain dopamine and reduced glutamic acid decarboxylase and choline acetyl transferase activity in schizophrenia and related psychoses. Bird ED; Spokes EG; Barnes J; MacKay AV; Iversen LL; Shepherd M Lancet; 1977 Dec; 2(8049):1157-8. PubMed ID: 73064 [TBL] [Abstract][Full Text] [Related]
20. Biochemical evidence for overlapping neocortical and allocortical glutamate projections to the nucleus accumbens and rostral caudatoputamen in the rat brain. Walaas I Neuroscience; 1981; 6(3):399-405. PubMed ID: 7219721 [No Abstract] [Full Text] [Related] [Next] [New Search]