These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 6099414)
61. Identification of the receptor for toxin II alpha from scorpion Leirus quinquestriatus in isolated lobster and squid nerve membranes. Delgado D; Barnola FV Comp Biochem Physiol B; 1987; 87(4):867-70. PubMed ID: 3665434 [TBL] [Abstract][Full Text] [Related]
62. Structural implications on the interaction of scorpion alpha-like toxins with the sodium channel receptor site inferred from toxin iodination and pH-dependent binding. Gilles N; Krimm I; Bouet F; Froy O; Gurevitz M; Lancelin JM; Gordon D J Neurochem; 2000 Oct; 75(4):1735-45. PubMed ID: 10987857 [TBL] [Abstract][Full Text] [Related]
63. Isolation and characterization of TsTX-V, a new neurotoxin from Tityus serrulatus scorpion venom which delays the inactivation of Na+ channels. Arantes EC; Riccioppo Neto F; Sampaio SV; Vieira CA; Giglio JR Biochim Biophys Acta; 1994 Jan; 1199(1):69-75. PubMed ID: 8280757 [TBL] [Abstract][Full Text] [Related]
64. Macromolecular sites for specific neurotoxins and drugs on chemosensitive synapses and electrical excitation in biological membranes. Albuquerque EX; Daly JW; Warnick JE Ion Channels; 1988; 1():95-162. PubMed ID: 2485004 [TBL] [Abstract][Full Text] [Related]
65. Interactions of scorpion toxins with the sodium channel. Meves H; Simard JM; Watt DD Ann N Y Acad Sci; 1986; 479():113-32. PubMed ID: 2433986 [TBL] [Abstract][Full Text] [Related]
66. Structural mapping of the voltage-dependent sodium channel. Distance between the tetrodotoxin and Centruroides suffusus suffusus II beta-scorpion toxin receptors. Darbon H; Angelides KJ J Biol Chem; 1984 May; 259(10):6074-84. PubMed ID: 6327664 [TBL] [Abstract][Full Text] [Related]
67. Polypeptide toxins as tools to study voltage-sensitive Na+ channels. Lazdunski M; Frelin C; Barhanin J; Lombet A; Meiri H; Pauron D; Romey G; Schmid A; Schweitz H; Vigne P Ann N Y Acad Sci; 1986; 479():204-20. PubMed ID: 2433992 [No Abstract] [Full Text] [Related]
68. Discrimination of muscle and neuronal Na-channel subtypes by binding competition between [3H]saxitoxin and mu-conotoxins. Moczydlowski E; Olivera BM; Gray WR; Strichartz GR Proc Natl Acad Sci U S A; 1986 Jul; 83(14):5321-5. PubMed ID: 2425365 [TBL] [Abstract][Full Text] [Related]
69. Tityus serrulatus toxin VII bears pharmacological properties of both beta-toxin and insect toxin from scorpion venoms. De Lima ME; Martin MF; Diniz CR; Rochat H Biochem Biophys Res Commun; 1986 Aug; 139(1):296-302. PubMed ID: 2429652 [TBL] [Abstract][Full Text] [Related]
70. Purification and chemical and biological characterizations of seven toxins from the Mexican scorpion, Centruroides suffusus suffusus. Martin MF; Garcia y Perez LG; el Ayeb M; Kopeyan C; Bechis G; Jover E; Rochat H J Biol Chem; 1987 Apr; 262(10):4452-9. PubMed ID: 2435711 [TBL] [Abstract][Full Text] [Related]
71. Development of sodium channel protein during chemically induced differentiation of neuroblastoma cells. Baumgold J; Spector I J Neurochem; 1987 Apr; 48(4):1264-9. PubMed ID: 2434620 [TBL] [Abstract][Full Text] [Related]
72. Covalent labeling of protein components of the sodium channel with a photoactivable derivative of scorpion toxin. Beneski DA; Catterall WA Proc Natl Acad Sci U S A; 1980 Jan; 77(1):639-43. PubMed ID: 6928649 [TBL] [Abstract][Full Text] [Related]
73. Alpha-scorpion neurotoxin derivatives suitable as potential markers of sodium channels. Preparation and characterization. Darbon H; Jover E; Couraud F; Rochat H Int J Pept Protein Res; 1983 Aug; 22(2):179-86. PubMed ID: 6311763 [TBL] [Abstract][Full Text] [Related]
74. Ciguatoxin and brevetoxins share a common receptor site on the neuronal voltage-dependent Na+ channel. Lombet A; Bidard JN; Lazdunski M FEBS Lett; 1987 Jul; 219(2):355-9. PubMed ID: 2440718 [TBL] [Abstract][Full Text] [Related]
75. The interaction between a Na+-channel toxin and brain microtubule proteins in vitro. Hargreaves AJ; Montejo de Garcini E; Avila J Brain Res; 1986 Jul; 387(1):43-51. PubMed ID: 2427170 [TBL] [Abstract][Full Text] [Related]
76. Binding of scorpion neurotoxins to chick embryonic heart cells in culture and relationship to calcium uptake and membrane potential. Couraud F; Rochat H; Lissitzky S Biochemistry; 1980 Feb; 19(3):457-62. PubMed ID: 7356938 [TBL] [Abstract][Full Text] [Related]
77. Binding of beta-scorpion toxin: a physicochemical study. Jover E; Bablito J; Couraud F Biochemistry; 1984 Mar; 23(6):1147-52. PubMed ID: 6712940 [TBL] [Abstract][Full Text] [Related]
78. Characteristics of saxitoxin binding to the sodium channel of sarcolemma isolated from rat skeletal muscle. Barchi RL; Weigele JB J Physiol; 1979 Oct; 295():383-96. PubMed ID: 42783 [TBL] [Abstract][Full Text] [Related]
79. Electron microscopic evidence for scorpion toxin binding to synapses of rat brain cortex. Trejo AC; Possani LD Neurosci Lett; 1982 Oct; 32(2):103-8. PubMed ID: 7145231 [TBL] [Abstract][Full Text] [Related]
80. Voltage-dependent blockade of muscle Na+ channels by guanidinium toxins. Moczydlowski E; Hall S; Garber SS; Strichartz GS; Miller C J Gen Physiol; 1984 Nov; 84(5):687-704. PubMed ID: 6096479 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]