These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 6099414)

  • 81. Interaction of scorpion toxins with the sodium channel.
    Rochat H; Darbon H; Jover E; Martin MF; Bablito J; Couraud F
    J Physiol (Paris); 1984; 79(4):334-7. PubMed ID: 6099416
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Voltage-sensitive Na+ channels in mammalian peripheral nerves detected using scorpion toxins.
    Massacrier A; Couraud F; Cau P
    J Neurocytol; 1990 Dec; 19(6):850-72. PubMed ID: 1963443
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Use of selective toxins to separate surface and tubular sodium currents in frog skeletal muscle fibers.
    Arispe N; Jaimovich E; Liberona JL; Rojas E
    Pflugers Arch; 1988 Jan; 411(1):1-7. PubMed ID: 2451210
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Stimulation of sodium and calcium uptake by scorpion toxin in chick embryo heart cells.
    Couraud F; Rochat H; Lissitzky S
    Biochim Biophys Acta; 1976 Apr; 433(1):90-100. PubMed ID: 1260064
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Biochemical studies of the excitable membrane sodium channel.
    Barchi RL
    Int Rev Neurobiol; 1982; 23():69-101. PubMed ID: 6288608
    [No Abstract]   [Full Text] [Related]  

  • 86. Ultrastructural localization of voltage-sensitive sodium channels using [125I]alpha scorpion toxin.
    Cau P; Massacrier A; Boudier JL; Couraud F
    Brain Res; 1985 May; 334(1):9-17. PubMed ID: 2581670
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Early appearance of cells bearing Na+ channels in developing mouse brain. A quantitative analysis using light microscopic autoradiography.
    Martin-Moutot N; Cau P; Berwald-Netter Y; Couraud F
    Brain Res; 1987 Mar; 429(1):43-51. PubMed ID: 2436720
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Saxitoxin binding to synaptosomes, membranes, and solubilized binding sites from rat brain.
    Krueger BK; Ratzlaff RW; Strichartz GR; Blaustein MP
    J Membr Biol; 1979 Nov; 50(3-4):287-310. PubMed ID: 513116
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Localization of voltage-sensitive sodium channels on the extrasynaptic membrane surface of mouse skeletal muscle by autoradiography of scorpion toxin binding sites.
    Le Treut T; Boudier JL; Jover E; Cau P
    J Neurocytol; 1990 Jun; 19(3):408-20. PubMed ID: 2167949
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Identification of two sodium channel subtypes in chick heart and brain.
    Rogart RB; Regan LJ; Dziekan LC; Galper JB
    Proc Natl Acad Sci U S A; 1983 Feb; 80(4):1106-10. PubMed ID: 6302670
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Perturbation of glycoprotein processing affects the neurotoxin-responsive Na+ channel in neuroblastoma cells.
    Negishi M; Glick MC
    Carbohydr Res; 1986 Jun; 149(1):185-98. PubMed ID: 2425966
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Changes in the ratio of two separate toxin binding sites on the sodium channel protein during rat brain development.
    Baumgold J
    Brain Res; 1985 Jan; 349(1-2):271-4. PubMed ID: 2580602
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The effect of nerve growth factor on the development of sodium channels in PC12 cells.
    Reed JK; England D
    Biochem Cell Biol; 1986 Nov; 64(11):1153-9. PubMed ID: 2435307
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Voltage-sensitive Na+ channels in the neurohypophysis of the rat as demonstrated by 125I-labelled scorpion toxin.
    Dellmann HD; Boudier JA; Couraud F; Cau P; Boudier JL
    Neurosci Lett; 1983 Jan; 35(1):71-7. PubMed ID: 6302608
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Ontogenic appearance of Na+ channels characterized as high affinity binding sites for tetrodotoxin during development of the rat nervous and skeletal muscle systems.
    Lombet A; Kazazoglou T; Delpont E; Renaud JF; Lazdunski M
    Biochem Biophys Res Commun; 1983 Feb; 110(3):894-901. PubMed ID: 6301467
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Autoradiographic localization of voltage-dependent sodium channels on the mouse neuromuscular junction using 125I-alpha scorpion toxin. I. Preferential labeling of glial cells on the presynaptic side.
    Boudier JL; Jover E; Cau P
    J Neurosci; 1988 May; 8(5):1469-78. PubMed ID: 2452863
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Photoaffinity labeling of the receptor site for alpha-scorpion toxins on purified and reconstituted sodium channels by a new toxin derivative.
    Tejedor FJ; Catterall WA
    Cell Mol Neurobiol; 1990 Jun; 10(2):257-65. PubMed ID: 2163754
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Binding to saxitoxin to electrically excitable neuroblastoma cells.
    Catterall WA; Morrow CS
    Proc Natl Acad Sci U S A; 1978 Jan; 75(1):218-22. PubMed ID: 272638
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Sodium channel internalization in developing neurons.
    Dargent B; Paillart C; Carlier E; Alcaraz G; Martin-Eauclaire MF; Couraud F
    Neuron; 1994 Sep; 13(3):683-90. PubMed ID: 7917298
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Localization of the receptor site for alpha-scorpion toxins by antibody mapping: implications for sodium channel topology.
    Thomsen WJ; Catterall WA
    Proc Natl Acad Sci U S A; 1989 Dec; 86(24):10161-5. PubMed ID: 2557622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.