These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 6099414)

  • 101. Binding of scorpion and sea anemone neurotoxins to a common site related to the action potential Na+ ionophore in neuroblastoma cells.
    Couraud F; Rochat H; Lissitzky S
    Biochem Biophys Res Commun; 1978 Aug; 83(4):1525-30. PubMed ID: 29635
    [No Abstract]   [Full Text] [Related]  

  • 102. Neurotoxin-modulated uptake of sodium by highly purified preparations of the electroplax tetrodotoxin-binding glycopeptide reconstituted into lipid vesicles.
    Duch DS; Levinson SR
    J Membr Biol; 1987; 98(1):43-55. PubMed ID: 2444706
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Biochemical characterization of the tetrodotoxin binding protein from Electrophorus electricus.
    Moore AC; Agnew WS; Raftery MA
    Biochemistry; 1982 Nov; 21(24):6212-20. PubMed ID: 6295460
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Purification from rat sarcolemma of the saxitoxin-binding component of the excitable membrane sodium channel.
    Barchi RL; Cohen SA; Murphy LE
    Proc Natl Acad Sci U S A; 1980 Mar; 77(3):1306-10. PubMed ID: 6246486
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Binding of scorpion toxin to receptor sites associated with voltage-sensitive sodium channels in synaptic nerve ending particles.
    Ray R; Morrow CS; Catterall WA
    J Biol Chem; 1978 Oct; 253(20):7307-13. PubMed ID: 81203
    [No Abstract]   [Full Text] [Related]  

  • 106. Photoaffinity labeling of the tetrodotoxin binding component of Electrophorus electricus electroplax.
    Uehara S; Uyemura K
    Neurochem Res; 1985 Aug; 10(8):1119-28. PubMed ID: 2414680
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Na+ channels with high and low affinity tetrodotoxin binding sites in the mammalian skeletal muscle cell. Difference in functional properties and sequential appearance during rat skeletal myogenesis.
    Frelin C; Vigne P; Lazdunski M
    J Biol Chem; 1983 Jun; 258(12):7256-9. PubMed ID: 6305931
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Purification and functional reconstitution of the voltage-sensitive sodium channel from rabbit T-tubular membranes.
    Kraner SD; Tanaka JC; Barchi RL
    J Biol Chem; 1985 May; 260(10):6341-7. PubMed ID: 2581954
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Direct evidence that receptor site-4 of sodium channel gating modifiers is not dipped in the phospholipid bilayer of neuronal membranes.
    Cohen L; Gilles N; Karbat I; Ilan N; Gordon D; Gurevitz M
    J Biol Chem; 2006 Jul; 281(30):20673-20679. PubMed ID: 16720570
    [TBL] [Abstract][Full Text] [Related]  

  • 110. High-affinity binding of alpha-scorpion toxin: a neuronal property.
    Martin-Moutot N; Couraud F; Houzet E; Berwald-Netter Y
    Brain Res; 1983 Sep; 274(2):267-74. PubMed ID: 6626954
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Expression of ion channels during differentiation of a human skeletal muscle cell line.
    Liberona JL; Caviedes P; Tascón S; Hidalgo J; Giglio JR; Sampaio SV; Caviedes R; Jaimovich E
    J Muscle Res Cell Motil; 1997 Oct; 18(5):587-98. PubMed ID: 9350011
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Spontaneous opening at zero membrane potential of sodium channels from eel electroplax reconstituted into lipid vesicles.
    Duch DS; Levinson SR
    J Membr Biol; 1987; 98(1):57-68. PubMed ID: 2444707
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Use of a monoclonal antibody to purify the tetrodotoxin binding component from the electroplax of Electrophorus electricus.
    Nakayama H; Withy RM; Raftery MA
    Proc Natl Acad Sci U S A; 1982 Dec; 79(23):7575-9. PubMed ID: 6296840
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Monoclonal antibodies against the voltage-sensitive Na+ channel from mammalian skeletal muscle.
    Casadei JM; Gordon RD; Lampson LA; Schotland DL; Barchi RL
    Proc Natl Acad Sci U S A; 1984 Oct; 81(19):6227-31. PubMed ID: 6207539
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Reduction and reoxidation of the neurotoxin II from the scorpion Androctonus australis Hector.
    Sabatier JM; Darbon H; Fourquet P; Rochat H; Van Rietschoten J
    Int J Pept Protein Res; 1987 Jul; 30(1):125-34. PubMed ID: 3667073
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Membrane potential-dependent binding of scorpion toxin to the action potential Na+ ionophore. Studies with a toxin derivative prepared by lactoperoxidase-catalyzed iodination.
    Catterall WA
    J Biol Chem; 1977 Dec; 252(23):8660-8. PubMed ID: 72754
    [No Abstract]   [Full Text] [Related]  

  • 117. Effects of ethanol on the functional properties of sodium channels in brain synaptosomes.
    Mullin MJ; Hunt WA
    Recent Dev Alcohol; 1987; 5():303-11. PubMed ID: 2436257
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Toxins as tools in the study of sodium channel distribution in the muscle fibre membrane.
    Brazil OV; Fontana MD
    Toxicon; 1993 Sep; 31(9):1085-98. PubMed ID: 8266342
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Two types of scorpion neurotoxins characterized by their binding to two separate receptor sites on rat brain synaptosomes.
    Jover E; Couraud F; Rochat H
    Biochem Biophys Res Commun; 1980 Aug; 95(4):1607-14. PubMed ID: 7417336
    [No Abstract]   [Full Text] [Related]  

  • 120. Muscle surface membranes: preparative methods affect apparent chemical properties and neurotoxin binding.
    Barchi RL; Weigele JB; Chalikian DM; Murphy LE
    Biochim Biophys Acta; 1979 Jan; 550(1):59-76. PubMed ID: 216403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.