These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 6099711)

  • 21. Pyrogallol red oxidation induced by superoxide radicals: application to evaluate redox cycling of nitro compounds.
    Faúndez M; Rojas M; Bohle P; Reyes C; Letelier ME; Aliaga ME; Speisky H; Lissi E; López-Alarcón C
    Anal Biochem; 2011 Dec; 419(2):284-91. PubMed ID: 21945352
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of four indirect methods for fluid superoxide dismutase activities.
    DiSilvestro RA; David C; David EA
    Free Radic Biol Med; 1990; 9(6):507-10. PubMed ID: 2079230
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of transfection with a superoxide dismutase expression plasmid on xanthine/xanthine oxidase-induced cytotoxicity in cultured rat lung cells.
    Komada F; Nishiguchi K; Tanigawara Y; Wu XY; Iwakawa S; Okumura K
    Biol Pharm Bull; 1996 Aug; 19(8):1100-2. PubMed ID: 8874827
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pressure variation of enzymatic reaction rates: IV. Xanthine oxidase and superoxide dismutase.
    Morild E; Olmheim JE
    Physiol Chem Phys; 1981; 13(6):483-91. PubMed ID: 6287508
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The tetrazolium dyes MTS and XTT provide new quantitative assays for superoxide and superoxide dismutase.
    Sutherland MW; Learmonth BA
    Free Radic Res; 1997 Sep; 27(3):283-9. PubMed ID: 9350432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. C-reactive protein selectively enhances the intracellular generation of reactive oxygen products by IgG-stimulated monocytes and neutrophils.
    Zeller JM; Sullivan BL
    J Leukoc Biol; 1992 Oct; 52(4):449-55. PubMed ID: 1328445
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Xanthine oxidase binding to glycosaminoglycans: kinetics and superoxide dismutase interactions of immobilized xanthine oxidase-heparin complexes.
    Radi R; Rubbo H; Bush K; Freeman BA
    Arch Biochem Biophys; 1997 Mar; 339(1):125-35. PubMed ID: 9056242
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superoxide dismutase-like activities of copper(II) complexes tested in serum.
    Huber KR; Sridhar R; Griffith EH; Amma EL; Roberts J
    Biochim Biophys Acta; 1987 Sep; 915(2):267-76. PubMed ID: 2820500
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lucigenin is a mediator of cytochrome C reduction but not of superoxide production.
    Afanas'ev IB; Ostrachovitch EA; Korkina LG
    Arch Biochem Biophys; 1999 Jun; 366(2):267-74. PubMed ID: 10356292
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assay of superoxide dismutase: cautions relevant to the use of cytochrome c, a sulfonated tetrazolium, and cyanide.
    Okado-Matsumoto A; Fridovich I
    Anal Biochem; 2001 Nov; 298(2):337-42. PubMed ID: 11700991
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Copper(II)[2,3-butanedionebis(N4-methylthiosemicarbazone)], a stable superoxide dismutase-like copper complex with high membrane penetrability.
    Wada K; Fujibayashi Y; Yokoyama A
    Arch Biochem Biophys; 1994 Apr; 310(1):1-5. PubMed ID: 8161192
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of xanthine: xanthine oxidase on membrane function: an in vitro model of endothelial damage.
    Ager A
    Agents Actions Suppl; 1982; 11():73-81. PubMed ID: 6960654
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new paradigm: manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state.
    Buettner GR; Ng CF; Wang M; Rodgers VG; Schafer FQ
    Free Radic Biol Med; 2006 Oct; 41(8):1338-50. PubMed ID: 17015180
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of superoxide generating systems on muscle tone, cholinergic and NANC responses in cat airway.
    Bauer V; Nakajima T; Pucovsky V; Onoue H; Ito Y
    J Auton Nerv Syst; 2000 Feb; 79(1):34-44. PubMed ID: 10683504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of the electrochemistry of cytochrome c to the measurement of superoxide radical production.
    McNeil CJ; Smith KA; Bellavite P; Bannister JV
    Free Radic Res Commun; 1989; 7(2):89-96. PubMed ID: 2553552
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lucigenin as mediator of superoxide production: revisited.
    Liochev SI; Fridovich I
    Free Radic Biol Med; 1998 Nov; 25(8):926-8. PubMed ID: 9840737
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of reaction of 3-hydroxyanthranilic acid with molecular oxygen.
    Manthey MK; Pyne SG; Truscott RJ
    Biochim Biophys Acta; 1990 May; 1034(2):207-12. PubMed ID: 2162210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of flavonoids on xanthine oxidation as well as on cytochrome c reduction by milk xanthine oxidase.
    Iio M; Ono Y; Kai S; Fukumoto M
    J Nutr Sci Vitaminol (Tokyo); 1986 Dec; 32(6):635-42. PubMed ID: 3035152
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reduction of ferricytochrome C may underestimate superoxide production by monocytes.
    Arthur MJ; Kowalski-Saunders P; Gurney S; Tolcher R; Bull FG; Wright R
    J Immunol Methods; 1987 Apr; 98(1):63-9. PubMed ID: 3031166
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Xanthine oxidase- and iron-dependent lipid peroxidation.
    Miller DM; Grover TA; Nayini N; Aust SD
    Arch Biochem Biophys; 1993 Feb; 301(1):1-7. PubMed ID: 8382902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.