BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 6100213)

  • 1. [Use of isolated kidney tubules in metabolic studies].
    Michalik M
    Postepy Biochem; 1984; 30(3-4):295-316. PubMed ID: 6100213
    [No Abstract]   [Full Text] [Related]  

  • 2. Distribution of hexokinase and phosphoenolpyruvate carboxykinase along the rabbit nephron.
    Vandewalle A; Wirthensohn G; Heidrich HG; Guder WG
    Am J Physiol; 1981 Jun; 240(6):F492-500. PubMed ID: 7246739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of intracellular cAMP in renal gluconeogenesis in view of differential action of various cAMP analogues.
    Jagielski AK; Podszywałow-Bartnicka P; Derlacz RA; Bryła J
    Arch Biochem Biophys; 2005 Feb; 434(2):282-8. PubMed ID: 15639228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PPAR-gamma-independent inhibitory effect of rosiglitazone on glucose synthesis in primary cultured rabbit kidney-cortex tubules.
    Derlacz RA; Hyc K; Usarek M; Jagielski AK; Drozak J; Jarzyna R
    Biochem Cell Biol; 2008 Oct; 86(5):396-404. PubMed ID: 18923541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Molecular aspects of the action of insulin].
    Mertvetsov NP; Gordienko OE
    Vopr Med Khim; 1976; 22(1):3-14. PubMed ID: 193288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significance of the intracellular distribution of phosphoenolpyruvate carboxykinase in acidosis.
    Watford M; Hod Y; Utter MF; Hanson RW
    Contrib Nephrol; 1982; 31():84-7. PubMed ID: 7105755
    [No Abstract]   [Full Text] [Related]  

  • 7. Protection of renal phosphoenolpyruvate carboxykinase against degradation in vitro by ATP, cyclic AMP and amino acids.
    Seubert W; Peters HH; Boie-Nath A
    Biochem Biophys Res Commun; 1975 Mar; 63(1):36-42. PubMed ID: 164860
    [No Abstract]   [Full Text] [Related]  

  • 8. On the mechanism of gluconeogenesis and its regulation. VIII. Differentiation of regulatory attacks of glucocorticoids, L-lysine and cyclic AMP in renal gluconeogenesis.
    Stumpf B; Boie A; Leimcke H; Seubert W
    Hoppe Seylers Z Physiol Chem; 1974 Feb; 355(2):205-16. PubMed ID: 4373375
    [No Abstract]   [Full Text] [Related]  

  • 9. Endotoxin causes reciprocal changes in hepatic nitric oxide synthesis, gluconeogenesis, and flux through phosphoenolpyruvate carboxykinase.
    Horton RA; Knowles RG; Titheradge MA
    Biochem Biophys Res Commun; 1994 Oct; 204(2):659-65. PubMed ID: 7526853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycerol and lactate induce reciprocal changes in glucose formation and glutamine production in isolated rabbit kidney-cortex tubules incubated with aspartate.
    Lietz T; Bryła J
    Arch Biochem Biophys; 1995 Aug; 321(2):501-9. PubMed ID: 7646077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the absorption of halogenated hydrocarbons and their excretion in breath using 38 Cl tracer techniques.
    Alleyne GA
    Prog Biochem Pharmacol; 1972; 7():189-218. PubMed ID: 4567418
    [No Abstract]   [Full Text] [Related]  

  • 12. The physiological importance of insulin regulated gene expression: metabolic and molecular studies.
    O'Brien RM; Lucas PC; Yamasaki T; Granner DK
    Adv Second Messenger Phosphoprotein Res; 1993; 28():245-53. PubMed ID: 8398410
    [No Abstract]   [Full Text] [Related]  

  • 13. Sites of enzyme activity along the nephron.
    Schmidt U; Guder WG
    Kidney Int; 1976 Mar; 9(3):233-42. PubMed ID: 940267
    [No Abstract]   [Full Text] [Related]  

  • 14. Glucokinase and cytosolic phosphoenolpyruvate carboxykinase (GTP) in the human liver. Regulation of gene expression in cultured hepatocytes.
    Iynedjian PB; Marie S; Gjinovci A; Genin B; Deng SP; Buhler L; Morel P; Mentha G
    J Clin Invest; 1995 May; 95(5):1966-73. PubMed ID: 7738162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Regulation of the renal excretion of phosphates. Use of isolated vesicles of luminal membranes for the study of phosphate transport].
    Angielski S
    Postepy Biochem; 1984; 30(3-4):273-94. PubMed ID: 6443024
    [No Abstract]   [Full Text] [Related]  

  • 16. Regulation of renal ammonia production.
    Krebs HA; Vinay P
    Med Clin North Am; 1975 May; 59(3):595-603. PubMed ID: 1128013
    [No Abstract]   [Full Text] [Related]  

  • 17. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1.
    Yoon JC; Puigserver P; Chen G; Donovan J; Wu Z; Rhee J; Adelmant G; Stafford J; Kahn CR; Granner DK; Newgard CB; Spiegelman BM
    Nature; 2001 Sep; 413(6852):131-8. PubMed ID: 11557972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic gluconeogenesis is enhanced in renal proximal tubules of Zucker diabetic fatty rats.
    Eid A; Bodin S; Ferrier B; Delage H; Boghossian M; Martin M; Baverel G; Conjard A
    J Am Soc Nephrol; 2006 Feb; 17(2):398-405. PubMed ID: 16396963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1.
    Herzig S; Long F; Jhala US; Hedrick S; Quinn R; Bauer A; Rudolph D; Schutz G; Yoon C; Puigserver P; Spiegelman B; Montminy M
    Nature; 2001 Sep; 413(6852):179-83. PubMed ID: 11557984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of selegiline on glucose synthesis in rabbit kidney-cortex tubules and hepatocytes. In vitro and in vivo studies.
    Drozak J; Kozlowski M; Doroszewska R; Pera L; Derlacz R; Jarzyna R; Bryla J
    Chem Biol Interact; 2007 Dec; 170(3):162-76. PubMed ID: 17767924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.