These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 6100295)

  • 1. Respiratory control in Micrococcus lysodeikticus.
    Rosenberg M; Friedberg I
    J Bioenerg Biomembr; 1984 Feb; 16(1):61-8. PubMed ID: 6100295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate transport in arsenate-resistant mutants of Micrococcus lysodeikticus.
    Alfasi H; Friedberg D; Froedberg I
    J Bacteriol; 1979 Jan; 137(1):69-72. PubMed ID: 762027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of ionophores on phosphate and arsenate transport in Micrococcus lysodeikticus.
    Friedberg I
    FEBS Lett; 1977 Sep; 81(2):264-6. PubMed ID: 21813
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of valinomycin on ion transport in bacterial cells and on bacterial growth.
    Ryabova ID; Gorneva GA; Ovchinnikov YA
    Biochim Biophys Acta; 1975 Aug; 401(1):109-18. PubMed ID: 807259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of calcium ions and pentachlorophenol on the respiration of Micrococcus lysodeikticus.
    Fujita M; Ishikawa S; Yamashita S
    Nature; 1967 Feb; 213(5076):616-7. PubMed ID: 4291733
    [No Abstract]   [Full Text] [Related]  

  • 6. Oxidative phosphorylation in Micrococcus denitrificans. 3. ATP-supported reduction of NAD+ by succinate.
    Asano A; Imai K; Sato R
    J Biochem; 1967 Aug; 62(2):210-4. PubMed ID: 4296888
    [No Abstract]   [Full Text] [Related]  

  • 7. Oxidative phosphorylation coupled to oxygen uptake and nitrate reduction in Micrococcus denitrificans.
    John P; Whatley FR
    Biochim Biophys Acta; 1970 Sep; 216(2):342-52. PubMed ID: 4323434
    [No Abstract]   [Full Text] [Related]  

  • 8. Phosphate transport in Micrococcus lysodeikticus.
    Friedberg I
    Biochim Biophys Acta; 1977 May; 466(3):451-60. PubMed ID: 15596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Respiration-driven proton translocation in Micrococcus denitrificans.
    Scholes P; Mitchell P
    J Bioenerg; 1971 Sep; 1(3):309-23. PubMed ID: 5135306
    [No Abstract]   [Full Text] [Related]  

  • 10. Inhibition by butylmalonate of proton influx in nonphosphorylating mitochondria.
    Fransvea E; La Piana G; Marzulli D; Lofrumento NE
    Arch Biochem Biophys; 1998 Jul; 355(1):93-100. PubMed ID: 9647671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of arsenate on inorganic phosphate transport in Escherichia coli.
    Willsky GR; Malamy MH
    J Bacteriol; 1980 Oct; 144(1):366-74. PubMed ID: 6998959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal inactivation of electron-transport functions and F0F1-ATPase activities.
    Tomita M; Knox BE; Tsong TY
    Biochim Biophys Acta; 1987 Oct; 894(1):16-28. PubMed ID: 2889470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of ADP on reverse electron flow and the oxygen exchange reactions catalyzed by bovine heart muscle submitochondrial particles.
    Mitchell RA; Russo JA; Lamos CM
    J Supramol Struct; 1975; 3(3):256-60. PubMed ID: 1237767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane orientation in vesicles from Micrococcus lysodeikticus cells.
    Gorneva GA; Ryabova ID
    FEBS Lett; 1974 Jun; 42(3):271-4. PubMed ID: 4368905
    [No Abstract]   [Full Text] [Related]  

  • 15. Mitochondrial ATP-Pi exchange complex.
    Hatefi Y; Stiggall DL; Galante Y; Hanstein WG
    Biochem Biophys Res Commun; 1974 Nov; 61(1):313-21. PubMed ID: 4155298
    [No Abstract]   [Full Text] [Related]  

  • 16. [No stimulation of the growth of microorganisms by repair-substances (author's transl)].
    Mütze B
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1976; 131(8):673-7. PubMed ID: 798454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Release of respiratory control in particles from Micrococcus denitrificans by ion-translocating antibiotics.
    John P; Hamilton WA
    Eur J Biochem; 1971 Dec; 23(3):528-32. PubMed ID: 5139216
    [No Abstract]   [Full Text] [Related]  

  • 18. Characterization of phosphate efflux pathways in rat liver mitochondria.
    Kaplan RS; Pedersen PL
    Biochem J; 1983 May; 212(2):279-88. PubMed ID: 6882372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Participation of inorganic phosphate in the chemiosmotic mechanism of mitochondrial energy transduction.
    Fonyó A; Lukács G; Ligeti E
    Acta Biol Med Ger; 1981; 40(7-8):907-14. PubMed ID: 7331635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial phosphate transport during nutrient stimulation of INS-1E insulinoma cells.
    Quan X; Das R; Xu S; Cline GW; Wiederkehr A; Wollheim CB; Park KS
    Mol Cell Endocrinol; 2013 Dec; 381(1-2):198-209. PubMed ID: 23939247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.