These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 6100933)
1. Determinants of proton relaxation rates in tissue. Koenig SH; Brown RD Magn Reson Med; 1984 Dec; 1(4):437-49. PubMed ID: 6100933 [TBL] [Abstract][Full Text] [Related]
2. Magnetic field dependence of 1/T1 of protons in tissue. Koenig SH; Brown RD; Adams D; Emerson D; Harrison CG Invest Radiol; 1984; 19(2):76-81. PubMed ID: 6533107 [TBL] [Abstract][Full Text] [Related]
3. Magnetic field dependence of solvent proton relaxation induced by Gd3+ and Mn2+ complexes. Koenig SH; Baglin C; Brown RD; Brewer CF Magn Reson Med; 1984 Dec; 1(4):496-501. PubMed ID: 6443784 [TBL] [Abstract][Full Text] [Related]
4. Relaxation of solvent protons by paramagnetic ions and its dependence on magnetic field and chemical environment: implications for NMR imaging. Koenig SH; Brown RD Magn Reson Med; 1984 Dec; 1(4):478-95. PubMed ID: 6571571 [TBL] [Abstract][Full Text] [Related]
5. Magnetic field dependence of proton relaxation rates in tissue with added Mn2+: rabbit liver and kidney. Koenig SH; Brown RD; Goldstein EJ; Burnett KR; Wolf GL Magn Reson Med; 1985 Apr; 2(2):159-68. PubMed ID: 3938510 [TBL] [Abstract][Full Text] [Related]
6. Longitudinal proton relaxation rates in rabbit tissues after intravenous injection of free and chelated Mn2+. Spiller M; Brown RD; Koenig SH; Wolf GL Magn Reson Med; 1988 Nov; 8(3):293-313. PubMed ID: 2849704 [TBL] [Abstract][Full Text] [Related]
7. Magnetic field dependence of solvent proton relaxation rates induced by Gd3+ and Mn2+ complexes of various polyaza macrocyclic ligands: implications for NMR imaging. Geraldes CF; Sherry AD; Brown RD; Koenig SH Magn Reson Med; 1986 Apr; 3(2):242-50. PubMed ID: 3086656 [TBL] [Abstract][Full Text] [Related]
8. Lithium-7 nuclear magnetic resonance, water proton nuclear magnetic resonance, and gadolinium electron paramagnetic resonance studies of the sarcoplasmic reticulum calcium ion transport adenosine triphosphatase. Stephens EM; Grisham CM Biochemistry; 1979 Oct; 18(22):4876-85. PubMed ID: 228703 [TBL] [Abstract][Full Text] [Related]
9. Quantitative studies of hydrodynamic effects and cross-relaxation in protein solutions and tissues with proton and deuteron longitudinal relaxation times. Zhong JH; Gore JC; Armitage IM Magn Reson Med; 1990 Feb; 13(2):192-203. PubMed ID: 2156124 [TBL] [Abstract][Full Text] [Related]
10. Frequency dependence of magnetic resonance spin-lattice relaxation of protons in biological materials. Fullerton GD; Cameron IL; Ord VA Radiology; 1984 Apr; 151(1):135-8. PubMed ID: 6322223 [TBL] [Abstract][Full Text] [Related]
11. Theory of relaxation of mobile water protons induced by protein NH moieties, with application to rat heart muscle and calf lens homogenates. Koenig SH Biophys J; 1988 Jan; 53(1):91-6. PubMed ID: 2829984 [TBL] [Abstract][Full Text] [Related]
12. Influence of paramagnetic ions bound to human serum albumin on water 1HNMR relaxation times. Marzola P; Cannistraro S Physiol Chem Phys Med NMR; 1986; 18(4):263-73. PubMed ID: 3615639 [TBL] [Abstract][Full Text] [Related]
13. NMR proton T1 and T2 relaxation times from fresh, in vitro canine tissues at 5.1 MHz. Wolf GL; Conard B Physiol Chem Phys Med NMR; 1983; 15(1):19-22. PubMed ID: 6316378 [TBL] [Abstract][Full Text] [Related]
14. The importance of the motion of water for magnetic resonance imaging. Koenig SH; Brown RD Invest Radiol; 1985; 20(3):297-305. PubMed ID: 4030265 [TBL] [Abstract][Full Text] [Related]
15. Influence of paramagnetic ions and pH on proton NMR relaxation of biologic fluids. Barnhart JL; Berk RN Invest Radiol; 1986 Feb; 21(2):132-6. PubMed ID: 3007390 [TBL] [Abstract][Full Text] [Related]
16. The tissue proton T1 and T2 response to gadolinium DTPA injection in rabbits. A potential renal contrast agent for NMR imaging. Wolf GL; Fobben ES Invest Radiol; 1984; 19(4):324-8. PubMed ID: 6090336 [TBL] [Abstract][Full Text] [Related]
17. Studies of tissue NMR relaxation enhancement by manganese. Dose and time dependences. Kang YS; Gore JC Invest Radiol; 1984; 19(5):399-407. PubMed ID: 6511248 [TBL] [Abstract][Full Text] [Related]
18. NMR relaxation of protein and water protons in diamagnetic hemoglobin solutions. Eisenstadt M Biochemistry; 1985 Jul; 24(14):3407-21. PubMed ID: 4041420 [TBL] [Abstract][Full Text] [Related]
19. Magnetic field dependence of solvent proton relaxation by solute dysprosium (III) complexes. Kellar KE; Fossheim SL; Koenig SH Invest Radiol; 1998 Nov; 33(11):835-40. PubMed ID: 9818318 [TBL] [Abstract][Full Text] [Related]
20. Magnetic cross-relaxation among protons in protein solutions. Koenig SH; Bryant RG; Hallenga K; Jacob GS Biochemistry; 1978 Oct; 17(20):4348-58. PubMed ID: 213107 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]