These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 6101931)

  • 1. In vitro digestion of gliadin by gastrointestinal enzymes and by pyrrolidonecarboxylate peptidase.
    Caldwell KA
    Am J Clin Nutr; 1980 Feb; 33(2):293-302. PubMed ID: 6101931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acid composition of gliadin fractions which may be toxic to individuals with coeliac disease.
    Cornell HJ; Maxwell RJ
    Clin Chim Acta; 1982 Aug; 123(3):311-9. PubMed ID: 6811164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptic-tryptic digests of gliadin: contaminating trypsin but not pepsin interferes with gastrointestinal protein binding characteristics.
    Bolte G; Osman A; Mothes T; Stern M
    Clin Chim Acta; 1996 Mar; 247(1-2):59-70. PubMed ID: 8920227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mucosal digestion studies of whole gliadin fractions in coeliac disease.
    Cornell HJ
    Ann Clin Biochem; 1990 Jan; 27 ( Pt 1)():44-9. PubMed ID: 2310157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An accurate fluorometric method to measure the breakdown of gliadin and gliadin peptides.
    Bruce G; Woodley JF
    Clin Chim Acta; 1981 Dec; 117(3):325-32. PubMed ID: 6797760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angiotensin I converting enzyme inhibitory peptides from in vitro pepsin-pancreatin digestion of soy protein.
    Lo WM; Li-Chan EC
    J Agric Food Chem; 2005 May; 53(9):3369-76. PubMed ID: 15853374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The digestion of albumin, gliadin and beta-lactoglobulin by pepsin, trypsin and pancreatic extract.
    Eggermont E; Carchon H; Corbeel L; Eeckels R
    Acta Paediatr Belg; 1979; 32(1):55-8. PubMed ID: 377908
    [No Abstract]   [Full Text] [Related]  

  • 8. Isolation and identification of indigestible pyroglutamyl peptides in an enzymatic hydrolysate of wheat gluten prepared on an industrial scale.
    Higaki-Sato N; Sato K; Esumi Y; Okumura T; Yoshikawa H; Tanaka-Kuwajima C; Kurata A; Kotaru M; Kawabata M; Nakamura Y; Ohtsuki K
    J Agric Food Chem; 2003 Jan; 51(1):8-13. PubMed ID: 12502378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lysosomal damage by gliadin and gliadin peptides; an activity not related to coeliac disease.
    de Rooij FW; van den Aarsen CP; Hekkens WT
    Clin Chim Acta; 1979 Jan; 91(2):127-31. PubMed ID: 759040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The toxic fraction of gliadin digests in coeliac disease. Isolation by chromatography on Biogel P-10.
    Jos J; Charbonnier L; Mossé J; Olives JP; de Tand MF; Rey J
    Clin Chim Acta; 1982 Mar; 119(3):263-74. PubMed ID: 6802520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of in vitro gamma-interferon production in coeliac disease as a response to gliadin peptides.
    Cornell HJ; Skerritt JH; Puy R; Javadpour M
    Biochim Biophys Acta; 1994 May; 1226(2):126-30. PubMed ID: 8204658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and characterization of L-pyrrolidonecarboxylate peptidase from Bacillus amyloiliquefaciens.
    Tsuru D; Fujiwara K; Kado K
    J Biochem; 1978 Aug; 84(2):467-76. PubMed ID: 29893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breakdown of gliadin peptides by intestinal brush borders from coeliac patients.
    Bruce G; Woodley JF; Swan CH
    Gut; 1984 Sep; 25(9):919-24. PubMed ID: 6381246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in activity, antigenicity, and molecular size of rice bran trypsin inhibitor by in vitro digestion.
    Tashiro M; Ikegami S
    J Nutr Sci Vitaminol (Tokyo); 1996 Aug; 42(4):367-76. PubMed ID: 8906637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of heating on the digestibility of isolated hempseed (Cannabis sativa L.) protein and bioactivity of its pepsin-pancreatin digests.
    Lin Y; Pangloli P; Meng X; Dia VP
    Food Chem; 2020 Jun; 314():126198. PubMed ID: 31954285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The toxicity of certain cereal proteins in coeliac disease.
    Cornell HJ; Townley RR
    Gut; 1974 Nov; 15(11):862-9. PubMed ID: 4455563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of jejunal mucosal digestion of peptic-tryptic digests of wheat protein in coeliac disease.
    Pittman FE; Pollitt RJ
    Gut; 1966 Aug; 7(4):368-71. PubMed ID: 5331197
    [No Abstract]   [Full Text] [Related]  

  • 18. Antioxidant and bile acid binding activity of buckwheat protein in vitro digests.
    Ma Y; Xiong YL
    J Agric Food Chem; 2009 May; 57(10):4372-80. PubMed ID: 19320435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation and antioxidant activities of peptides and zinc-peptide complexes during in vitro gastrointestinal digestion.
    Wang C; Li B; Wang B; Xie N
    Food Chem; 2015 Apr; 173():733-40. PubMed ID: 25466083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antihypertensive properties of spinach leaf protein digests.
    Yang Y; Marczak ED; Usui H; Kawamura Y; Yoshikawa M
    J Agric Food Chem; 2004 Apr; 52(8):2223-5. PubMed ID: 15080624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.