BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 6101988)

  • 1. Catecholamine-stimulated cyclic AMP formation in phenylethanolamine N-methyltransferase containing brain stem nuclei of normal rats and of rats with spontaneous genetic hypertension.
    Wilkening D; Dvorkin B; Makman MH; Lew JY; Matsumoto J; Baba Y; Goldstein M; Fuxe K
    Brain Res; 1980 Mar; 186(1):133-43. PubMed ID: 6101988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain alpha-adrenergic receptors: comparison of [3H]WB 4101 binding with norepinephrine-stimulated cyclic AMP accumulation in rat cerebral cortex.
    Davis JN; Arnett CD; Hoyler E; Stalvey LP; Daly JW; Skolnick P
    Brain Res; 1978 Dec; 159(1):125-35. PubMed ID: 31963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of adrenergic agents on alpha-amylase release and adenosine 3',5'-monophosphate accumulation in rat parotid tissue slices.
    Butcher FR; Goldman JA; Nemerovski
    Biochim Biophys Acta; 1975 May; 392(1):82-94. PubMed ID: 164957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitors of phenylethanolamine N-methyltransferase. 1. Effects of 2-cycloocytyl-2-hydroxyethylamine on rat brain and adrenal catecholamine content and blood pressure.
    Liang NY; Tessel RE; Grunewald GL; Borchardt RT
    J Pharmacol Exp Ther; 1982 Nov; 223(2):375-81. PubMed ID: 7131292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of adenosine 3',5'-monophosphate formation in rat cerebral cortical slices by methoxamine: interaction with an alpha adrenergic receptor.
    Skolnick P; Daly JW
    J Pharmacol Exp Ther; 1975 May; 193(2):549-58. PubMed ID: 238025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the functional role of brain adrenergic neurons: chronic effects of phenylethanolamine N-methyltransferase inhibitors and alpha adrenergic receptor antagonists on brain norepinephrine metabolism.
    Stolk JM; Vantini G; Perry BD; Guchhait RB; U'Prichard DC
    J Pharmacol Exp Ther; 1984 Sep; 230(3):577-86. PubMed ID: 6147403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of alpha-methyldopa, clonidine and hydralazine on norepinephrine and epinephrine synthesizing enzymes in the brainstem nuclei of spontaneously hypertensive rats.
    Nakamura K; Okada T; Ishii H; Nakamura K
    Jpn J Pharmacol; 1980 Feb; 30(1):1-10. PubMed ID: 7401402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adrenaline levels in brain stem nuclei and effects of a PNMT inhibitor on spontaneously hypertensive rats.
    Saavedra JM
    Brain Res; 1979 Apr; 166(2):283-92. PubMed ID: 427591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catecholamines and phenylethanolamine N-methyltransferase in selected brain nuclei and in the pineal gland of neurogenically hypertensive rats.
    Saavedra JM; Alexander N
    Brain Res; 1983 Sep; 274(2):388-92. PubMed ID: 6626969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective activation of noradrenergic neurons in the brainstem and spinal cord of young spontaneously hypertensive rats.
    Nakamura K; Nakamura K
    Experientia; 1978 Aug; 34(8):1042-3. PubMed ID: 700020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenylethanolamine N-methyltransferase gene expression in adrenergic neurons of spontaneously hypertensive rats.
    Grandbois J; Khurana S; Graff K; Nguyen P; Meltz L; Tai TC
    Neurosci Lett; 2016 Dec; 635():103-110. PubMed ID: 27769893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of corticosterone treatment and adrenalectomy on phenylethanolamine N-methyltransferase and catecholamines in brain stem and hypothalamic nuclei and superior cervical ganglion of rats.
    Culman J; Torda T; Petríková M; Murgas K
    Endocrinol Exp; 1988 Jun; 22(2):117-28. PubMed ID: 3261683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adrenergic versus VIPergic control of cyclic AMP in human colonic crypts.
    Boige N; Munck A; Laburthe M
    Peptides; 1984; 5(2):379-83. PubMed ID: 6147817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of catecholamines and adrenergic-blocking agents on plasma and urinary cyclic nucleotides in man.
    Ball JH; Kaminsky NI; Hardman JG; Broadus AE; Sutherland EW; Liddle GW
    J Clin Invest; 1972 Aug; 51(8):2124-9. PubMed ID: 4403383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrete changes in adrenaline-forming enzyme activity in brain stem areas of genetic salt-sensitive hypertensive (Dahl) rats.
    Saavedra JM; Correa FM; Iwai J
    Brain Res; 1980 Jul; 193(1):299-303. PubMed ID: 7378825
    [No Abstract]   [Full Text] [Related]  

  • 16. Antagonism of alpha- and beta-adrenergic-mediated accumulations of cyclic AMP in rat cerebral cortical slices by the beta-antagonist (-)alprenolol.
    Skolnick P; Daly JW
    Life Sci; 1976 Aug; 19(4):497-503. PubMed ID: 8683
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of catecholamines and their interaction with other hormones on cyclic 3',5'-adenosine monophosphate of the kidney.
    Beck NP; Reed SW; Murdaugh HV; Davis BB
    J Clin Invest; 1972 Apr; 51(4):939-44. PubMed ID: 4335447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of epinephrine with isolated rabbit tracheal epithelial cells.
    Liedtke CM
    Am J Physiol; 1986 Aug; 251(2 Pt 1):C209-15. PubMed ID: 2874740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of adrenaline on acetylcholine synthesis after blockade of alpha- and beta-adrenergic receptors in vitro.
    Górny D; Billewicz-Stankiewicz J; Kleinrok A; Tomaszewski A
    Acta Physiol Pol; 1977; 28(4):313-20. PubMed ID: 22984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catecholamine synthesizing enzymes in brain stem and hypothalamus during the development of renovascular hypertension.
    Petty MA; Reid JL
    Brain Res; 1979 Mar; 163(2):277-88. PubMed ID: 34465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.