These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 6102086)

  • 1. Stimulation by aminoacyl-tRNA of the GTPase and ATPase activities of rat liver 5S RNA protein particles in the presence of EF-2.
    Ogata K; Terao K; Uchiumi T
    J Biochem; 1980 Feb; 87(2):517-24. PubMed ID: 6102086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATPase associated with ribosomal 30S-5SRNP particles and 40S subunits of rat liver.
    Ogata K; Ohno R; Terao K; Iwasaki K; Endo Y
    J Biochem; 1998 Feb; 123(2):294-304. PubMed ID: 9538206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the elongation factors from calf brain. 3. Properties of the GTPase activity of EF-1 alpha and mode of action of kirromycin.
    Crechet JB; Parmeggiani A
    Eur J Biochem; 1986 Dec; 161(3):655-60. PubMed ID: 3024979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different regions of aminoacyl-tRNA regulate the function of elongation factor Tu.
    Parlato G; Pizzano R; Picone D; Guesnet J; Fasano O; Parmeggiani A
    J Biol Chem; 1983 Jan; 258(2):995-1000. PubMed ID: 6130090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Some properties and the possible role of intrinsic ATPase of rat liver 80S ribosomes in peptide bond elongation.
    Ogata K; Ohno R; Terao K; Iwasaki K; Endo Y
    J Biochem; 2000 Feb; 127(2):221-31. PubMed ID: 10731688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The GTPase activity of elongation factor Tu and the 3'-terminal end of aminoacyl-tRNA.
    Parlato G; Guesnet J; Crechet JB; Parmeggiani A
    FEBS Lett; 1981 Mar; 125(2):257-60. PubMed ID: 6112171
    [No Abstract]   [Full Text] [Related]  

  • 7. The coupling with polypeptide synthesis of the GTPase activity dependent on elongation factor G.
    Chinali G; Parmeggiani A
    J Biol Chem; 1980 Aug; 255(15):7455-9. PubMed ID: 6104671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GTPase center of elongation factor Tu is activated by occupation of the second tRNA binding site.
    Van Noort JM; Kraal B; Bosch L
    Proc Natl Acad Sci U S A; 1986 Jul; 83(13):4617-21. PubMed ID: 3014498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity of the 30-S CsCl core in elongation-factor-dependent GTP hydrolysis.
    Sander G; Marsh RC; Parmeggiani A
    Eur J Biochem; 1976 Jan; 61(1):317-23. PubMed ID: 173554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATPase strongly bound to higher eukaryotic ribosomes.
    Rodnina MV; Serebryanik AI; Ovcharenko GV; El'Skaya AV
    Eur J Biochem; 1994 Oct; 225(1):305-10. PubMed ID: 7925450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Stoichiometry of GTP hydrolysis during peptide synthesis on the ribosome. GTP hydrolysis uncoupled with ribosomal peptide synthesis and dependent on preparation of elongation factor T].
    Smailov SK; Kakhniashvili DG; Gavrilova LP
    Biokhimiia; 1982 Oct; 47(10):1747-51. PubMed ID: 6129003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu.
    Wolf H; Chinali G; Parmeggiani A
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4910-4. PubMed ID: 4373734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational activation of the EF-Tu . GTPase activity. Stimulation of the 2'(3')-O-L-phenylalanyladenosine-promoted EF-Tu . GTPase upon binding of the tRNAPhe lacking the terminal adenosine residue.
    Bhuta P; Chládek S
    Biochim Biophys Acta; 1982 Dec; 699(3):293-6. PubMed ID: 6130788
    [No Abstract]   [Full Text] [Related]  

  • 14. [Stoichiometry of GTP hydrolysis during peptide synthesis on the ribosome. I. Factor-independent GTPase and ATPase of ribosomal preparations].
    Kakhniashvili DG; Smailov SK; Gavrilova LP
    Biokhimiia; 1980 Nov; 45(11):1999-2012. PubMed ID: 6113012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sites of action of fusidic acid in eukaryotes. Inhibition by fusidic acid of a ribosome-independent GTPase from Artemia salina embryos.
    Mazumder R
    Eur J Biochem; 1975 Oct; 58(2):549-54. PubMed ID: 171159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A ribosome-dependent GTPase from yeast distinct from elongation factor 2.
    Skogerson L; Wakatama E
    Proc Natl Acad Sci U S A; 1976 Jan; 73(1):73-6. PubMed ID: 174100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrolysis of GTP on elongation factor Tu.ribosome complexes promoted by 2'(3')-O-L-phenylalanyladenosine.
    Campuzano S; Modolell J
    Proc Natl Acad Sci U S A; 1980 Feb; 77(2):905-9. PubMed ID: 6987671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elongation factor T-dependent hydrolysis of guanosine triphosphate resistant to thiostrepton.
    Ballesta JP; Vazquez D
    Proc Natl Acad Sci U S A; 1972 Oct; 69(10):3058-62. PubMed ID: 4562752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elongation factor 1 from the silk gland of silkworm. Effect of EF-1b on EF-1a- and ribosome-dependent GTPase activity.
    Murakami K; Ejiri S; Katsumata T
    FEBS Lett; 1978 Aug; 92(2):255-7. PubMed ID: 212299
    [No Abstract]   [Full Text] [Related]  

  • 20. ATPase and GTPase activities associated with a specific 5S RNA-protein complex.
    Horne JR; Erdmann VA
    Proc Natl Acad Sci U S A; 1973 Oct; 70(10):2870-3. PubMed ID: 4355369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.