These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 6102906)

  • 41. Normal amino acid uptake by cultured human fibroblasts does not require gamma-glutamyl transpeptidase.
    Pellefigue F; Butler JD; Spielberg SP; Hollenberg MD; Goodman SI; Schulman JD
    Biochem Biophys Res Commun; 1976 Dec; 73(4):997-1002. PubMed ID: 15625873
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mutations in Saccharomyces cerevisiae which confer resistance to several amino acid analogs.
    McCusker JH; Haber JE
    Mol Cell Biol; 1990 Jun; 10(6):2941-9. PubMed ID: 2188104
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transport and metabolic effects of alpha-aminoisobutyric acid in Saccharomyces cerevisiae.
    Kim KW; Roon RJ
    Biochim Biophys Acta; 1982 Nov; 719(2):356-62. PubMed ID: 6758863
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evidence that the gamma-glutamyl cycle functions in vivo using intracellular glutathione: effects of amino acids and selective inhibition of enzymes.
    Griffith OW; Bridges RJ; Meister A
    Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5405-8. PubMed ID: 31622
    [TBL] [Abstract][Full Text] [Related]  

  • 45. GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression.
    Jauniaux JC; Grenson M
    Eur J Biochem; 1990 May; 190(1):39-44. PubMed ID: 2194797
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulation of compartmentation of amino acid pools in Saccharomyces cerevisiae and its effects on metabolic control.
    Messenguy F; Colin D; ten Have JP
    Eur J Biochem; 1980 Jul; 108(2):439-47. PubMed ID: 6997042
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A role for gamma-glutamyl transpeptidase and the amino acid transport system xc- in cystine transport by a human pancreatic duct cell line.
    Sweiry JH; Sastre J; Viña J; Elsässer HP; Mann GE
    J Physiol; 1995 May; 485 ( Pt 1)(Pt 1):167-77. PubMed ID: 7658371
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Amino acids induce expression of BAP2, a branched-chain amino acid permease gene in Saccharomyces cerevisiae.
    Didion T; Grauslund M; Kielland-Brandt MC; Andersen HA
    J Bacteriol; 1996 Apr; 178(7):2025-9. PubMed ID: 8606179
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentations.
    Beltran G; Novo M; Rozès N; Mas A; Guillamón JM
    FEMS Yeast Res; 2004 Mar; 4(6):625-32. PubMed ID: 15040951
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transcriptional and posttranslational regulation of the general amino acid permease of Saccharomyces cerevisiae.
    Stanbrough M; Magasanik B
    J Bacteriol; 1995 Jan; 177(1):94-102. PubMed ID: 7798155
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Alterations in fatty acyl composition can selectively affect amino acid transport in Saccharomyces cerevisiae.
    Mishra P; Prasad R
    Biochem Int; 1987 Sep; 15(3):499-508. PubMed ID: 3122760
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Construction of phosphatidylethanolamine-less strain of Saccharomyces cerevisiae. Effect on amino acid transport.
    Robl I; Grassl R; Tanner W; Opekarová M
    Yeast; 2001 Feb; 18(3):251-60. PubMed ID: 11180458
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The regulation of arginine biosynthesis in Saccharomyces cerevisiae. The specificity of argR- mutations and the general control of amino-acid biosynthesis.
    Delforge J; Messenguy F; Wiame JM
    Eur J Biochem; 1975 Sep; 57(1):231-9. PubMed ID: 1100402
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A role for gamma-glutamyl transpeptidase in the transport of cystine into human endothelial cells: relationship to intracellular glutathione.
    Cotgreave IA; Schuppe-Koistinen I
    Biochim Biophys Acta; 1994 Jul; 1222(3):375-82. PubMed ID: 7913623
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transport of amino acids and ammonium in mycelium of Agaricus bisporus.
    Kersten MA; Arninkhof MJ; Op den Camp HJ; Van Griensven LJ; van der Drift C
    Biochim Biophys Acta; 1999 Aug; 1428(2-3):260-72. PubMed ID: 10434044
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Periodic changes in rate of amino acid uptake during yeast cell cycle.
    Carter BL; Halvorson HO
    J Cell Biol; 1973 Aug; 58(2):401-9. PubMed ID: 4580902
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A high-affinity uptake system for branched-chain amino acids in Saccharomyces cerevisiae.
    Tullin S; Gjermansen C; Kielland-Brandt MC
    Yeast; 1991 Dec; 7(9):933-41. PubMed ID: 1803818
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Amino acids regulate the intracellular trafficking of the general amino acid permease of Saccharomycescerevisiae.
    Chen EJ; Kaiser CA
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):14837-42. PubMed ID: 12417748
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Translocation of glutathione from lymphoid cells that have markedly different gamma-glutamyl transpeptidase activities.
    Griffith OW; Novogrodsky A; Meister A
    Proc Natl Acad Sci U S A; 1979 May; 76(5):2249-52. PubMed ID: 36614
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gamma-glutamyl-amino acids as signals for the hormonal regulation of amino acid uptake by the mammary gland of the lactating rat.
    Viña JR; Puertes IR; Montoro JB; Saez GT; Viña J
    Biol Neonate; 1985; 48(4):250-6. PubMed ID: 2865983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.