These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 6103795)

  • 1. Glutathione-dependent dechlorination of chloramphenicol by cytosol of rat liver.
    Martin JL; George JW; Pohl LR
    Drug Metab Dispos; 1980; 8(2):93-7. PubMed ID: 6103795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of glutathione-dependent dechlorination of chloramphenicol and thiamphenicol by cytosol of rat liver.
    Martin JL; Gross BJ; Morris P; Pohl LR
    Drug Metab Dispos; 1980; 8(6):371-5. PubMed ID: 6109602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro biotransformation and genotoxicity of the drinking water disinfection byproduct bromodichloromethane: DNA binding mediated by glutathione transferase theta 1-1.
    Ross MK; Pegram RA
    Toxicol Appl Pharmacol; 2004 Mar; 195(2):166-81. PubMed ID: 14998683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new pathway for the oxidative metabolism of chloramphenicol by rat liver microsomes.
    Morris PL; Burke TR; George JW; Pohl LR
    Drug Metab Dispos; 1982; 10(5):439-45. PubMed ID: 6128189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The target portion of acetaminophen induced hepatotoxicity in rats: modification by thiol compounds.
    Hirayama C; Murawaki Y; Yamada S; Aoto Y; Ikeda F
    Res Commun Chem Pathol Pharmacol; 1983 Dec; 42(3):431-48. PubMed ID: 6665301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutathione-dependent conversion to glyoxylate, a major pathway of dichloroacetate biotransformation in hepatic cytosol from humans and rats, is reduced in dichloroacetate-treated rats.
    James MO; Cornett R; Yan Z; Henderson GN; Stacpoole PW
    Drug Metab Dispos; 1997 Nov; 25(11):1223-7. PubMed ID: 9351896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hepatic and pulmonary microsomal metabolism of naphthalene to glutathione adducts: factors affecting the relative rates of conjugate formation.
    Buckpitt AR; Bahnson LS; Franklin RB
    J Pharmacol Exp Ther; 1984 Nov; 231(2):291-300. PubMed ID: 6491983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reductive dechlorination of chloramphenicol by rat liver microsomes.
    Morris PL; Burke TR; Phol LR
    Drug Metab Dispos; 1983; 11(2):126-30. PubMed ID: 6133716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of dihalomethanes to formaldehyde and inorganic halide. I. In vitro studies.
    Ahmed AE; Anders MW
    Drug Metab Dispos; 1976; 4(4):357-61. PubMed ID: 8290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reductive metabolism of furazolidone by Escherichia coli and rat liver in vitro.
    Abraham RT; Knapp JE; Minnigh MB; Wong LK; Zemaitis MA; Alvin JD
    Drug Metab Dispos; 1984; 12(6):732-41. PubMed ID: 6150823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of cytosolic components on the metabolism of the hydrazide iproniazid.
    Spearman ME; Moloney SJ; Prough RA
    Mol Pharmacol; 1984 Nov; 26(3):566-73. PubMed ID: 6493212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutathione conjugation of trichloroethylene in rats and mice: sex-, species-, and tissue-dependent differences.
    Lash LH; Qian W; Putt DA; Jacobs K; Elfarra AA; Krause RJ; Parker JC
    Drug Metab Dispos; 1998 Jan; 26(1):12-9. PubMed ID: 9443846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Verlukast (MK-0679) conjugation with glutathione by rat liver and kidney cytosols and excretion in the bile.
    Nicoll-Griffith DA; Gupta N; Twa SP; Williams H; Trimble LA; Yergey JA
    Drug Metab Dispos; 1995 Oct; 23(10):1085-93. PubMed ID: 8654196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutathione-dependent metabolism of cis-3-(9H-purin-6-ylthio)acrylic acid to yield the chemotherapeutic drug 6-mercaptopurine: evidence for two distinct mechanisms in rats.
    Gunnarsdottir S; Elfarra AA
    J Pharmacol Exp Ther; 1999 Sep; 290(3):950-7. PubMed ID: 10454464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro biotransformation of 3,4-dihydro-6-hydroxy-2,2-dimethyl-7-methoxy-1(2H)-benzopyran (CR-6), a potent lipid peroxidation inhibitor and nitric oxide scavenger, in rat liver microsomes.
    Yenes S; Commandeur JN; Vermeulen NP; Messeguer A
    Chem Res Toxicol; 2004 Jul; 17(7):904-13. PubMed ID: 15257615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detoxification of vinyl carbamate epoxide by glutathione: evidence for participation of glutathione S-transferases in metabolism of ethyl carbamate.
    Kemper RA; Myers SR; Hurst HE
    Toxicol Appl Pharmacol; 1995 Nov; 135(1):110-8. PubMed ID: 7482530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloropicrin: reactions with biological thiols and metabolism in mice.
    Sparks SE; Quistad GB; Casida JE
    Chem Res Toxicol; 1997 Sep; 10(9):1001-7. PubMed ID: 9305582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactivation of 5-hydroxymethyl-2-furaldehyde to an electrophilic and mutagenic allylic sulfuric acid ester.
    Lee YC; Shlyankevich M; Jeong HK; Douglas JS; Surh YJ
    Biochem Biophys Res Commun; 1995 Apr; 209(3):996-1002. PubMed ID: 7733994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regioselectivity and quantitative structure-activity relationships for the conjugation of a series of fluoronitrobenzenes by purified glutathione S-transferase enzymes from rat and man.
    Soffers AE; Ploemen JH; Moonen MJ; Wobbes T; van Ommen B; Vervoort J; van Bladeren PJ; Rietjens IM
    Chem Res Toxicol; 1996; 9(3):638-46. PubMed ID: 8728510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutathione transferase theta 1-1-dependent metabolism of the water disinfection byproduct bromodichloromethane.
    Ross MK; Pegram RA
    Chem Res Toxicol; 2003 Feb; 16(2):216-26. PubMed ID: 12588193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.