These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 61043)

  • 1. Glycine transport by hemolysed and restored pigeon red cells. Effects of a Donnan-induced electrical potential on entry and exit kinetics.
    Vidaver GA; Shepherd SL; Lagow JB; Wiechelman KJ
    Biochim Biophys Acta; 1976 Sep; 443(3):494-514. PubMed ID: 61043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The reversal by phospholipid treatment of the gramicidin-induced Na+ permeability of pigeon red blood cells.
    Vidaver GA; Lee E; Lau W
    Arch Biochem Biophys; 1977 Feb; 179(1):67-70. PubMed ID: 65940
    [No Abstract]   [Full Text] [Related]  

  • 3. Na- and Cl-dependent glycine transport in human red blood cells and ghosts. A study of the binding of substrates to the outward-facing carrier.
    King PA; Gunn RB
    J Gen Physiol; 1989 Feb; 93(2):321-42. PubMed ID: 2703819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycine transport by pigeon red cells: calculation of glycine accumulation ratios by numerical integration of entry and exit rate equations.
    Vidaver GA
    Biochim Biophys Acta; 1971 Mar; 233(1):231-4. PubMed ID: 5579135
    [No Abstract]   [Full Text] [Related]  

  • 5. Glycine transport by membrane vesicles from pigeon red cells.
    Lee JW; Beygu-Farber S; Vidaver GA
    Biochim Biophys Acta; 1973 Mar; 298(2):446-59. PubMed ID: 4737016
    [No Abstract]   [Full Text] [Related]  

  • 6. Transport of glycine by hemolyzed and restored pigeon red blood cells. Symmetry properties, trans effects of sodium ion and glycine, and their description by a single rate equation.
    Vidaver GA; Shepherd SL
    J Biol Chem; 1968 Dec; 243(23):6140-50. PubMed ID: 5723458
    [No Abstract]   [Full Text] [Related]  

  • 7. The effect of gramicidin on sodium-dependent accumulation of glycine by pigeon red cells: a test of the cation gradient hypothesis.
    Terry PM; Vidaver GA
    Biochim Biophys Acta; 1973 Oct; 323(3):441-55. PubMed ID: 4127938
    [No Abstract]   [Full Text] [Related]  

  • 8. Monitoring membrane potentials in Ehrlich ascites tumor cells by means of a fluorescent dye.
    Laris PC; Pershadsingh HA; Johnstone RM
    Biochim Biophys Acta; 1976 Jun; 436(2):475-88. PubMed ID: 1276225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of Cl- translocation across small intestinal brush-border membrane. I. Absence of Na+-Cl- cotransport.
    Liedtke CM; Hopfer U
    Am J Physiol; 1982 Mar; 242(3):G263-71. PubMed ID: 7065188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of bicarbonate exit across basolateral membrane of rabbit proximal straight tubule.
    Sasaki S; Shiigai T; Yoshiyama N; Takeuchi J
    Am J Physiol; 1987 Jan; 252(1 Pt 2):F11-8. PubMed ID: 3812695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid electrogenic sulfate-chloride exchange mediated by chemically modified band 3 in human erythrocytes.
    Jennings ML
    J Gen Physiol; 1995 Jan; 105(1):21-47. PubMed ID: 7537324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroneutral, HCO3(-)-independent, pH gradient-dependent uphill transport of Cl- by ileal brush-border membrane vesicles. Possible role in the pathogenesis of chloridorrhea.
    Vasseur M; CaĆ¼zac M; Alvarado F
    Biochem J; 1989 Nov; 263(3):775-84. PubMed ID: 2597129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dipyridamole inhibition of HCO3(-)-Cl- exchange in human erythrocytes.
    Heming TA; Vanoye CG; Bidani A
    J Pharmacol Exp Ther; 1990 Nov; 255(2):631-5. PubMed ID: 2243345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of anions on the Na(+)-H+ exchange of trout red blood cells.
    Guizouarn H; Scheuring U; Borgese F; Motais R; Garcia-Romeu F
    J Physiol; 1990 Sep; 428():79-94. PubMed ID: 2172527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of cAMP agonists on cell pH and anion transport by cultured rat inner medullary collecting duct cells.
    Zhang C; Husted RF; Stokes JB
    Am J Physiol; 1996 Jan; 270(1 Pt 2):F131-40. PubMed ID: 8769831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus.
    Heyne RI; de Vrij W; Crielaard W; Konings WN
    J Bacteriol; 1991 Jan; 173(2):791-800. PubMed ID: 1670936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid transport by resealed ghosts from pigeon erythrocytes.
    Wheeler KP
    Biochem J; 1982 Mar; 202(3):613-21. PubMed ID: 7092835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catecholamine-induced transport systems in trout erythrocyte. Na+/H+ countertransport or NaCl cotransport?
    Borgese F; Garcia-Romeu F; Motais R
    J Gen Physiol; 1986 Apr; 87(4):551-66. PubMed ID: 3701298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycine transport by human red blood cells and ghosts: evidence for glycine anion and proton cotransport by band 3.
    King PA; Gunn RB
    Am J Physiol; 1991 Nov; 261(5 Pt 1):C814-21. PubMed ID: 1659210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic permeability of K, Na, and Cl in potassium-depolarized nerve. Dependency on pH, cooperative effects, and action of tetrodotoxin.
    Strickholm A
    Biophys J; 1981 Sep; 35(3):677-97. PubMed ID: 7272457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.