These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 61043)

  • 21. GLYCINE TRANSPORT BY HEMOLYZED AND RESTORED PIGEON RED CELLS.
    VIDAVER GA
    Biochemistry; 1964 Jun; 3():795-9. PubMed ID: 14211618
    [No Abstract]   [Full Text] [Related]  

  • 22. Red cell amino acid transport. Evidence for the presence of system Gly in guinea pig reticulocytes.
    Fincham DA; Willis JS; Young JD
    Biochim Biophys Acta; 1984 Oct; 777(1):147-50. PubMed ID: 6207858
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characteristics of sodium transport by excised rabbit trachea.
    Boucher RC; Gatzy JT
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Dec; 55(6):1877-83. PubMed ID: 6662779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potential difference and the distribution of ions across the human red blood cell membrane; a study of the mechanism by which the fluorescent cation, diS-C3-(5) reports membrane potential.
    Hladky SB; Rink TJ
    J Physiol; 1976 Dec; 263(2):287-319. PubMed ID: 14255
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chloride is required for receptor-mediated divalent cation entry in mesangial cells.
    Kremer SG; Zeng W; Hurst R; Ning T; Whiteside C; Skorecki KL
    J Cell Physiol; 1995 Jan; 162(1):15-25. PubMed ID: 7529236
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The negative charge of the membrane has opposite effects on the membrane entry and exit of pH-low insertion peptide.
    Scott HL; Nguyen VP; Alves DS; Davis FL; Booth KR; Bryner J; Barrera FN
    Biochemistry; 2015 Mar; 54(9):1709-12. PubMed ID: 25692747
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Donnan equilibrium and kinetics of uric acid transport across human erythrocyte membrane].
    Fontenaille C; Lucas-Héron B
    C R Seances Soc Biol Fil; 1975; 169(1):48-53. PubMed ID: 241469
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Further studies of the volume-regulatory response of Amphiuma red cells in hypertonic media. Evidence for amiloride-sensitive Na/H exchange.
    Kregenow FM; Caryk T; Siebens AW
    J Gen Physiol; 1985 Oct; 86(4):565-84. PubMed ID: 2997365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A thermodynamic study of electroneutral K-Cl cotransport in pH- and volume-clamped low K sheep erythrocytes with normal and low internal magnesium.
    Lauf PK; Adragna NC
    J Gen Physiol; 1996 Oct; 108(4):341-50. PubMed ID: 8894982
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of glutamate transport in Escherichia coli B. 1. Proton-dependent and sodium ion dependent binding of glutamate to a glutamate carrier in the cytoplasmic membrane.
    Fujimura T; Yamato I; Anraku Y
    Biochemistry; 1983 Apr; 22(8):1954-9. PubMed ID: 6133550
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Active sodium and potassium transport in high potassium and low potassium sheep red cells.
    Hoffman PG; Tosteson DC
    J Gen Physiol; 1971 Oct; 58(4):438-66. PubMed ID: 5112660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of gramicidin on the Na + -dependent accumulation of glycine by pigeon red blood cells.
    Terry PM; Vidaver GA
    Biochem Biophys Res Commun; 1972 May; 47(3):539-43. PubMed ID: 5038663
    [No Abstract]   [Full Text] [Related]  

  • 33. Independence of apical membrane Na+ and Cl- entry in Necturus gallbladder epithelium.
    Reuss L
    J Gen Physiol; 1984 Sep; 84(3):423-45. PubMed ID: 6481335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The choline transport system of erythrocytes distribution of the free carrier in the membrane.
    Krupka RM; Devés R
    Biochim Biophys Acta; 1980 Jul; 600(1):228-32. PubMed ID: 7397171
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prodigiosins uncouple lysosomal vacuolar-type ATPase through promotion of H+/Cl- symport.
    Ohkuma S; Sato T; Okamoto M; Matsuya H; Arai K; Kataoka T; Nagai K; Wasserman HH
    Biochem J; 1998 Sep; 334 ( Pt 3)(Pt 3):731-41. PubMed ID: 9729483
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrodiffusion, barrier, and gating analysis of DIDS-insensitive chloride conductance in human red blood cells treated with valinomycin or gramicidin.
    Freedman JC; Novak TS
    J Gen Physiol; 1997 Feb; 109(2):201-16. PubMed ID: 9041449
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetics and pH-dependence of glycine-proton symport in Saccharomyces cerevisiae.
    Ballarin-Denti A; Den Hollander JA; Sanders D; Slayman CW; Slayman CL
    Biochim Biophys Acta; 1984 Nov; 778(1):1-16. PubMed ID: 6093875
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chloride dependence of the sodium-dependent glycine transport in pig kidney cortex brush-border membrane vesicles.
    Scalera V; Corcelli A; Frassanito A; Storelli C
    Biochim Biophys Acta; 1987 Sep; 903(1):1-10. PubMed ID: 3651446
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reversed transport of amino acids in Ehrlich cells.
    Johnstone RM
    Biochim Biophys Acta; 1975 Dec; 413(2):252-64. PubMed ID: 53074
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cell volume regulation: the role of taurine loss in maintaining membrane potential and cell pH.
    Guizouarn H; Motais R; Garcia-Romeu F; Borgese F
    J Physiol; 2000 Feb; 523 Pt 1(Pt 1):147-54. PubMed ID: 10673551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.