BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 6104667)

  • 1. Activation and desensitization of beta-adrenergic receptor-coupled GTPase and adenylate cyclase of frog and turkey erythrocyte membranes.
    Pike LJ; Lefkowitz RJ
    J Biol Chem; 1980 Jul; 255(14):6860-7. PubMed ID: 6104667
    [No Abstract]   [Full Text] [Related]  

  • 2. Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes.
    Cassel D; Selinger Z
    Biochim Biophys Acta; 1976 Dec; 452(2):538-51. PubMed ID: 188466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel modulation of catecholamine activation of adenylate cyclase and formation of the high-affinity agonist.receptor complex in turkey erythrocyte membranes by temperature and cis-vaccenic acid.
    Briggs MM; Lefkowitz RJ
    Biochemistry; 1980 Sep; 19(19):4461-6. PubMed ID: 6250586
    [No Abstract]   [Full Text] [Related]  

  • 4. Activation of turkey erythrocyte adenylate cyclase and blocking of the catecholamine-stimulated GTPase by guanosine 5'-(gamma-thio) triphosphate.
    Cassel D; Selinger Z
    Biochem Biophys Res Commun; 1977 Aug; 77(3):868-73. PubMed ID: 197949
    [No Abstract]   [Full Text] [Related]  

  • 5. A high affinity agonist . beta-adrenergic receptor complex is an intermediate for catecholamine stimulation of adenylate cyclase in turkey and frog erythrocyte membranes.
    Stadel JM; DeLean A; Lefkowitz RJ
    J Biol Chem; 1980 Feb; 255(4):1436-41. PubMed ID: 6243637
    [No Abstract]   [Full Text] [Related]  

  • 6. The role of the guanine nucleotide exchange reaction in the regulation of the beta-adrenergic receptor and in the actions of catecholamines and cholera toxin on adenylate cyclase in turkey erythrocyte membranes.
    Lad PM; Nielsen TB; Preston MS; Rodbell M
    J Biol Chem; 1980 Feb; 255(3):988-95. PubMed ID: 6243304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateral mobility of beta-receptors involved in adenylate cyclase activation.
    Atlas D; Volsky DJ; Levitzki A
    Biochim Biophys Acta; 1980 Mar; 597(1):64-9. PubMed ID: 6245689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation of beta-adrenergic receptor-stimulated [3H]GDP release and adenylate cyclase activation. Differences between frog and turkey erythrocyte membranes.
    Pike LJ; Lefkowitz RJ
    J Biol Chem; 1981 Mar; 256(5):2207-12. PubMed ID: 6257708
    [No Abstract]   [Full Text] [Related]  

  • 9. The regulatory GTPase cycle of turkey erythrocyte adenylate cyclase.
    Cassel D; Levkovitz H; Selinger Z
    J Cyclic Nucleotide Res; 1977 Dec; 3(6):393-406. PubMed ID: 203612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mode of coupling between the beta-adrenergic receptor and adenylate cyclase in turkey erythrocytes.
    Tolkovsky AM; Levitzki A
    Biochemistry; 1978 Sep; 17(18):3795. PubMed ID: 212105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional integrity of desensitized beta-adrenergic receptors.
    Strulovici B; Stadel JM; Lefkowitz RJ
    J Biol Chem; 1983 May; 258(10):6410-4. PubMed ID: 6304039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slow GDP dissociation from the guanyl nucleotide site of turkey erythrocyte membranes is not the rate limiting step in the activation of adenylate cylase by beta-adrenergic receptors.
    Levitzki A
    FEBS Lett; 1980 Jun; 115(1):9-10. PubMed ID: 6248377
    [No Abstract]   [Full Text] [Related]  

  • 13. Hormone action at the membrane level. VI. Binding of (-)-[3H]dihydroalprenolol and (+/-)-[3H]isoproterenol to turkey erythrocytes and correlation with adenylate cyclase activity.
    Malchoff CD; Marinetti GV
    Biochim Biophys Acta; 1978 Feb; 538(3):541-54. PubMed ID: 203330
    [No Abstract]   [Full Text] [Related]  

  • 14. Identification and regulation of beta-adrenergic receptors.
    Lefkowitz RJ
    Adv Exp Med Biol; 1978; 96():137-60. PubMed ID: 24993
    [No Abstract]   [Full Text] [Related]  

  • 15. Magnesium dependence of agonist binding to adenylate cyclase-coupled hormone receptors.
    Williams LT; Mullikin D; Lefkowitz RJ
    J Biol Chem; 1978 May; 253(9):2984-9. PubMed ID: 25276
    [No Abstract]   [Full Text] [Related]  

  • 16. Solubilization of a catecholamine-sensitive guanosine triphosphatase from turkey erythrocyte membranes.
    Delavier-Klutchko C; Durieu-Trautmann O; Couraud PO; Andre C; Strosberg AD
    FEBS Lett; 1980 Aug; 117(1):341-3. PubMed ID: 6105971
    [No Abstract]   [Full Text] [Related]  

  • 17. Catecholamine-induced desensitization of turkey erythrocyte adenylate cyclase is associated with phosphorylation of the beta-adrenergic receptor.
    Stadel JM; Nambi P; Shorr RG; Sawyer DF; Caron MG; Lefkowitz RJ
    Proc Natl Acad Sci U S A; 1983 Jun; 80(11):3173-7. PubMed ID: 6304694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site.
    Cassel D; Selinger Z
    Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3307-11. PubMed ID: 198781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical characterization of the beta-adrenergic receptor of the frog erythrocyte.
    Caron MG; Limbird LE; Lefkowitz RJ
    Mol Cell Biochem; 1979 Dec; 28(1-3):45-66. PubMed ID: 231201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstitution of catecholamine-stimulated guanosinetriphosphatase activity.
    Brandt DR; Asano T; Pedersen SE; Ross EM
    Biochemistry; 1983 Sep; 22(19):4357-62. PubMed ID: 6138091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.