These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 6104844)

  • 1. Oral dyskinesia in brain-damaged rats withdrawn from a neuroleptic: implication for models of tardive dyskinesia.
    Glassman RB; Glassman HN
    Psychopharmacology (Berl); 1980; 69(1):19-25. PubMed ID: 6104844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oral dyskinesia in rats following brain lesions and neuroleptic drug administration.
    Gunne LM; Growdon J; Glaeser B
    Psychopharmacology (Berl); 1982; 77(2):134-9. PubMed ID: 6126902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carvedilol attenuates neuroleptic-induced orofacial dyskinesia: possible antioxidant mechanisms.
    Naidu PS; Singh A; Kulkarni SK
    Br J Pharmacol; 2002 May; 136(2):193-200. PubMed ID: 12010767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pathophysiology of tardive dyskinesia.
    Klawans HL; Carvey P; Tanner CM; Goetz CG
    J Clin Psychiatry; 1985 Apr; 46(4 Pt 2):38-41. PubMed ID: 2858479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurochemical changes associated with chronic administration of typical antipsychotics and its relationship with tardive dyskinesia.
    Bishnoi M; Chopra K; Kulkarni SK
    Methods Find Exp Clin Pharmacol; 2007 Apr; 29(3):211-6. PubMed ID: 17520104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallels between behavioral and neurochemical variability in the rat vacuous chewing movement model of tardive dyskinesia.
    Bachus SE; Yang E; McCloskey SS; Minton JN
    Behav Brain Res; 2012 Jun; 231(2):323-36. PubMed ID: 22503783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oral Dyskinesias and striatal lesions in rats after long-term co-treatment with haloperidol and 3-nitropropionic acid.
    Andreassen OA; Ferrante RJ; Beal MF; Jørgensen HA
    Neuroscience; 1998 Dec; 87(3):639-48. PubMed ID: 9758230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of 5-HT1A and 5-HT2A/2C receptor modulation on neuroleptic-induced vacuous chewing movements.
    Naidu PS; Kulkarni SK
    Eur J Pharmacol; 2001 Sep; 428(1):81-6. PubMed ID: 11779040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversal of neuroleptic-induced orofacial dyskinesia by 5-HT3 receptor antagonists.
    Naidu PS; Kulkarni SK
    Eur J Pharmacol; 2001 May; 420(2-3):113-7. PubMed ID: 11408032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of chronic naloxone administration on vacuous chewing movements and catalepsy in rats treated with long-term haloperidol decanoate.
    Egan MF; Ferguson JN; Hyde TM
    Brain Res Bull; 1995; 38(4):355-63. PubMed ID: 8535858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible antioxidant and neuroprotective mechanisms of FK506 in attenuating haloperidol-induced orofacial dyskinesia.
    Singh A; Naidu PS; Kulkarni SK
    Eur J Pharmacol; 2003 Sep; 477(2):87-94. PubMed ID: 14519411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroleptic-induced vacuous chewing movements as an animal model of tardive dyskinesia: a study in three rat strains.
    Tamminga CA; Dale JM; Goodman L; Kaneda H; Kaneda N
    Psychopharmacology (Berl); 1990; 102(4):474-8. PubMed ID: 1982902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. U-74500A (lazaroid), a 21-aminosteroid attenuates neuroleptic-induced orofacial dyskinesia.
    Bishnoi M; Chopra K; Kulkarni SK
    Methods Find Exp Clin Pharmacol; 2007 Nov; 29(9):601-5. PubMed ID: 18193111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oral tardive dyskinesia in the rat.
    Sundén-Kuronen B; Pohto P; Alanen E
    Acta Odontol Scand; 1983 Dec; 41(6):343-8. PubMed ID: 6581673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of chronic haloperidol and clozapine on vacuous chewing and dopamine-mediated jaw movements in rats: evaluation of a revised animal model of tardive dyskinesia.
    Ikeda H; Adachi K; Hasegawa M; Sato M; Hirose N; Koshikawa N; Cools AR
    J Neural Transm (Vienna); 1999; 106(11-12):1205-16. PubMed ID: 10651114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High frequency oral movements induced by long-term administration of amperozide but not FG5803 in rats.
    Liminga U; Andren PE; Ohlund LS; Gunne LM
    Psychopharmacology (Berl); 1996 Feb; 123(3):223-3O. PubMed ID: 8833415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel oral drug administration in an animal model of neuroleptic therapy.
    Schleimer SB; Johnston GA; Henderson JM
    J Neurosci Methods; 2005 Aug; 146(2):159-64. PubMed ID: 16054505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron spin resonance spectroscopy reveals alpha-phenyl-N-tert-butylnitrone spin-traps free radicals in rat striatum and prevents haloperidol-induced vacuous chewing movements in the rat model of human tardive dyskinesia.
    Rogoza RM; Fairfax DF; Henry P; N-Marandi S; Khan RF; Gupta SK; Mishra RK
    Synapse; 2004 Dec; 54(3):156-63. PubMed ID: 15452862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quercetin, a bioflavonoid, attenuates haloperidol-induced orofacial dyskinesia.
    Naidu PS; Singh A; Kulkarni SK
    Neuropharmacology; 2003 Jun; 44(8):1100-6. PubMed ID: 12763102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergence of oral and locomotor activity in chronic haloperidol-treated rats following cortical N-methyl-D-aspartate stimulation.
    Grimm JW; Kruzich PJ; See RE
    Pharmacol Biochem Behav; 1998 May; 60(1):167-73. PubMed ID: 9610939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.