These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 6105871)

  • 21. Variable Ca2+ sensitivity and activity of the Ca2+ pump in human erythrocytes: a consequence of variable membrane permeability or inherent property of the ATPase.
    Roufogalis BD; Al-Jobore A
    Cell Calcium; 1983 Feb; 4(1):27-32. PubMed ID: 6133630
    [No Abstract]   [Full Text] [Related]  

  • 22. Regulation of the activity and phosphorylation of the plasma membrane Ca(2+)-ATPase by protein kinase C in intact human erythrocytes.
    Wright LC; Chen S; Roufogalis BD
    Arch Biochem Biophys; 1993 Oct; 306(1):277-84. PubMed ID: 8215416
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of (Ca2+, Mg2+)-ATPase in human erythrocytes dependent on calcium and calmodulin.
    Scharff O
    Acta Biol Med Ger; 1981; 40(4-5):457-63. PubMed ID: 6118990
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preservation of the native structure and function of Ca2+-ATPase from sarcoplasmic reticulum: solubilization and reconstitution by new short-chain phospholipid detergent 1,2-diheptanoyl-sn-phosphatidylcholine.
    Shivanna BD; Rowe ES
    Biochem J; 1997 Jul; 325 ( Pt 2)(Pt 2):533-42. PubMed ID: 9230138
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Utilization of membranous lipid substrates by membranous enzymes. Hydrolysis of sphingomyelin in erythrocyte 'ghosts' and liposomes by the membranous sphingomyelinase of chicken erythrocyte 'ghosts'.
    Record M; Loyter A; Gatt S
    Biochem J; 1980 Apr; 187(1):115-21. PubMed ID: 6250532
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calcium transport in human inside-out erythrocyte vesicles.
    Mollman JE; Pleasure DE
    J Biol Chem; 1980 Jan; 255(2):569-74. PubMed ID: 6444299
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [The Ca pump and Ca ATPase in the erythrocytes of patients with hypertension: disorders detected in cytoskeletal membranes and in solubilized Ca ATPase].
    Pokudin NI; Orlov SN; Postnov IuV
    Kardiologiia; 1986 Mar; 26(3):94-9. PubMed ID: 2423739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of 4-OH-2,3-trans-nonenal on human erythrocyte plasma membrane Ca2+ pump and passive Ca2+ permeability.
    Raess BU; Keenan CE; McConnell EJ
    Biochem Biophys Res Commun; 1997 Jun; 235(3):451-4. PubMed ID: 9207174
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Active Ca2+ transport by vesicles reconstituted from Triton X-100-solubilized pigeon erythrocyte membrane.
    Yeung WK; Weisman G; Vidaver GA
    Biochim Biophys Acta; 1979 Aug; 555(2):249-58. PubMed ID: 476105
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Active calcium transport in red cell ghosts resealed in dextran solutions.
    Romero PJ
    Biochim Biophys Acta; 1981 Dec; 649(2):404-18. PubMed ID: 6172149
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of cardiotoxin on (Ca2+ + Mg2+)-ATPase of the erythrocyte and sarcoplasmic reticulum.
    Fourie AM; Meltzer S; Berman MC; Louw AI
    Biochem Int; 1983 May; 6(5):581-91. PubMed ID: 6148942
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activation and deactivation kinetics of Ca transport in inside-out erythrocyte membrane vesicles.
    Macintyre JD; Gunn RB
    Biochim Biophys Acta; 1981 Jun; 644(2):351-62. PubMed ID: 7260078
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Permeability for 45Ca and Ca-ATPase activity in erythrocyte membranes of patients with psoriasis].
    Petruniaka VV; Goncharenko MS; Kondakova AK; Mavrov II
    Vopr Med Khim; 1989; 35(6):59-63. PubMed ID: 2534247
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reconstitution of glucose-transporting vesicles from erythrocyte membranes disaggregated in detergent.
    Edwards PA
    Biochem J; 1977 Apr; 164(1):125-9. PubMed ID: 880225
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Irreversible modification of red cell Ca2+ transport by phenylglyoxal.
    Raess BU
    Mol Pharmacol; 1993 Aug; 44(2):399-404. PubMed ID: 8394994
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Effects of low concentrations of calcium and magnesium in the drinking water on transport of univalent cations and calcium in erythrocytes of normotensive rats].
    Kuznetsov SR; Orlov SN; Churina SK
    Biull Eksp Biol Med; 1991 May; 111(5):471-3. PubMed ID: 1831677
    [No Abstract]   [Full Text] [Related]  

  • 37. Large-scale isolation of human erythrocyte Ca2+-transport ATPase.
    Gietzen K; Kolandt J
    Biochem J; 1982 Oct; 207(1):155-9. PubMed ID: 6217813
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calmodulin activation of red blood cell (Ca2+ + Mg2+)-ATPase and its antagonism by phenothiazines.
    Raess BU; Vincenzi FF
    Mol Pharmacol; 1980 Sep; 18(2):253-8. PubMed ID: 6158670
    [No Abstract]   [Full Text] [Related]  

  • 39. Isolation from haemolysate of a proteinaceous inhibition of the red cell Ca2+-pump ATPase. Its action on the kinetics of the enzyme.
    Wüthrich A
    Cell Calcium; 1982 Aug; 3(3):201-14. PubMed ID: 6128073
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Circular dichroism and fluorescence studies on interaction of calmodulin (CaM) with purified (Ca2(+)-Mg2+)ATPase of erythrocyte ghosts.
    Wrzosek A; Famulski KS; Pikuła S
    Acta Biochim Pol; 1990; 37(1):173-6. PubMed ID: 2150904
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.