These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 6105889)

  • 41. [Proof of guanylate cyclase activity in the coronary artery of cattle].
    Busse E
    Acta Biol Med Ger; 1976; 35(12):1595-601. PubMed ID: 17986
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The relaxant activity of 4,7-dimethyl-1,2,5-oxadiazolo[3,4-d]-pyridazine 1,5,6-trioxide in the mouse corpus cavernosum.
    Göçmen C; Büyüknacar HS; Kots AY; Murad F; Kiroglu O; Kumcu EK
    J Pharmacol Exp Ther; 2006 Feb; 316(2):753-61. PubMed ID: 16254132
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reversible activation of soluble guanylate cyclase by oxidizing agents.
    Wu XB; Brüne B; von Appen F; Ullrich V
    Arch Biochem Biophys; 1992 Apr; 294(1):75-82. PubMed ID: 1347985
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cellular mechanisms of nitrate action.
    Fung HL; Chung SJ; Chong S; Hough K; Kakami M; Kowaluk E
    Z Kardiol; 1989; 78 Suppl 2():14-7; discussion 64-7. PubMed ID: 2573980
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Endothelium-derived relaxing factor and atriopeptin II elevate cyclic GMP levels in pig aortic endothelial cells.
    Martin W; White DG; Henderson AH
    Br J Pharmacol; 1988 Jan; 93(1):229-39. PubMed ID: 2894877
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of sulfhydryl-dependent dimerization of soluble guanylyl cyclase in relaxation of porcine coronary artery to nitric oxide.
    Zheng X; Ying L; Liu J; Dou D; He Q; Leung SW; Man RY; Vanhoutte PM; Gao Y
    Cardiovasc Res; 2011 Jun; 90(3):565-72. PubMed ID: 21248051
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanisms of interaction between the sulfhydryl precursor L-methionine and glyceryl trinitrate.
    Münzel T; Mülsch A; Holtz J; Just H; Harrison DG; Bassenge E
    Circulation; 1992 Sep; 86(3):995-1003. PubMed ID: 1355413
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nitric oxide liberating, soluble guanylate cyclase stimulating and vasorelaxing properties of the new nitrate-compound SPM 3672.
    Kojda G; Noack E
    J Cardiovasc Pharmacol; 1993 Jul; 22(1):103-11. PubMed ID: 7690081
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Explanation of the discrepancy between the degree of organic nitrate decomposition, nitrite formation and guanylate cyclase stimulation.
    Feelisch M; Noack E; Schröder H
    Eur Heart J; 1988 Jan; 9 Suppl A():57-62. PubMed ID: 2900766
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Heterogeneity of glyceryl trinitrate response in isolated bovine coronary arteries.
    De la Lande IS; Stafford I; Horowitz JD
    Eur J Pharmacol; 1996 Dec; 318(1):65-71. PubMed ID: 9007514
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of thiols, sugars, and proteins on nitric oxide activation of guanylate cyclase.
    Braughler JM; Mittal CK; Murad F
    J Biol Chem; 1979 Dec; 254(24):12450-4. PubMed ID: 40996
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of sodium nitrite on ultraviolet light-induced relaxation and ultraviolet light-dependent activation of guanylate cyclase in bovine mesenteric arteries.
    Wigilius IM; Axelsson KL; Andersson RG; Karlsson JO; Odman S
    Biochem Biophys Res Commun; 1990 May; 169(1):129-35. PubMed ID: 1972015
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nitric oxide inhibits vascular bioactivation of glyceryl trinitrate: a novel mechanism to explain preferential venodilation of organic nitrates.
    Kojda G; Patzner M; Hacker A; Noack E
    Mol Pharmacol; 1998 Mar; 53(3):547-54. PubMed ID: 9495823
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vitro activation of soluble guanylyl cyclase and nitric oxide release: a comparison of NO donors and NO mimetics.
    Artz JD; Toader V; Zavorin SI; Bennett BM; Thatcher GR
    Biochemistry; 2001 Aug; 40(31):9256-64. PubMed ID: 11478893
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [The role of thiols in the stimulation of soluble guanylate cyclase by a new class of enzyme activators generating nitric oxide].
    Belushkina NN; Riaposova IK; Severina IS
    Biull Eksp Biol Med; 1997 Jan; 123(1):39-42. PubMed ID: 9213454
    [No Abstract]   [Full Text] [Related]  

  • 56. Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase.
    Feelisch M; Noack EA
    Eur J Pharmacol; 1987 Jul; 139(1):19-30. PubMed ID: 2888663
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Activation of purified soluble guanylate cyclase by arachidonic acid requires absence of enzyme-bound heme.
    Ignarro LJ; Wood KS
    Biochim Biophys Acta; 1987 Apr; 928(2):160-70. PubMed ID: 2882783
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nitric oxide stimulates guanylate cyclase and regulates sodium transport in rabbit proximal tubule.
    Roczniak A; Burns KD
    Am J Physiol; 1996 Jan; 270(1 Pt 2):F106-15. PubMed ID: 8769828
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Formation of endothelium-derived relaxing factor in porcine kidney epithelial LLC-PK1 cells: an intra- and intercellular messenger for activation of soluble guanylate cyclase.
    Ishii K; Chang B; Kerwin JF; Wagenaar FL; Huang ZJ; Murad F
    J Pharmacol Exp Ther; 1991 Jan; 256(1):38-43. PubMed ID: 1671098
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Activation of purified soluble guanylate cyclase by endothelium-derived relaxing factor from intrapulmonary artery and vein: stimulation by acetylcholine, bradykinin and arachidonic acid.
    Ignarro LJ; Harbison RG; Wood KS; Kadowitz PJ
    J Pharmacol Exp Ther; 1986 Jun; 237(3):893-900. PubMed ID: 2872327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.