BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 6106008)

  • 41. Distribution of cell types of the islets of Langerhans throughout the pancreas of the Chacma baboon.
    Wolfe-Coote SA; Du Toit DF
    Anat Rec; 1987 Feb; 217(2):172-7. PubMed ID: 2883914
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Immunocytochemical localization of peptides in the endocrine pancreas of the snakes Vipera aspis and Natrix maura.
    Masini MA
    Acta Histochem; 1988; 84(2):111-9. PubMed ID: 2907396
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Induction of cerebral death in slaughterhouse pigs facilitates pancreas harvesting for islet isolation.
    Kerr-Conte J; Pattou F; Hober C; Ple A; Riquier M; Proye C; Lefebvre J
    Transplant Proc; 1994 Apr; 26(2):614-5. PubMed ID: 7909628
    [No Abstract]   [Full Text] [Related]  

  • 44. Quantitative morphology of endocrine cells in human fetal pancreas.
    Clark A; Grant AM
    Diabetologia; 1983 Jul; 25(1):31-5. PubMed ID: 6193017
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An immunohistochemical study on the pancreatic islets cells of the Mongolian gerbils, Meriones unguiculatus.
    Ku SK; Lee HS; Park KD; Lee JH
    J Vet Sci; 2001 Apr; 2(1):9-14. PubMed ID: 14614288
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Beckwith-Wiedemann syndrome: a quantitative, immunohistochemical study of pancreatic islet cell populations.
    Stefan Y; Bordi C; Grasso S; Orci L
    Diabetologia; 1985 Dec; 28(12):914-9. PubMed ID: 2868957
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The transplanted fetal endocrine pancreas undergoes an inherent sequential differentiation similar to that in the native pancreas. An ultrastructural study in the pig-to-mouse model.
    Lukinius A; Korsgren O
    Diabetes; 2001 May; 50(5):962-71. PubMed ID: 11334439
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Changes in the pancreatic A-, B- and D-cell populations during development of diabetes in spontaneously diabetic Chinese hamsters of the Asahikawa colony (CHAD).
    Iwashima Y; Watanabe K; Makino I
    Diabetes Res Clin Pract; 1990 Mar; 8(3):201-14. PubMed ID: 1971211
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Application of immunogold-silver staining and immunoenzymatic methods in multiple labelling of human pancreatic Langerhans islet cells.
    Krenács T; Lászik Z; Dobó E
    Acta Histochem; 1989; 85(1):79-85. PubMed ID: 2565643
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ontogeny, postnatal development and ageing of endocrine pancreas in Bubalus bubalis.
    Lucini C; Castaldo L; Lai O; De Vico G
    J Anat; 1998 Apr; 192 ( Pt 3)(Pt 3):417-24. PubMed ID: 9688507
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polypeptide hormones in argentaffin and argyrophil gastroduodenal endocrine tumors.
    Wilander E; Grimelius L; Lundqvist G; Skoog V
    Am J Pathol; 1979 Aug; 96(2):519-30. PubMed ID: 224707
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The first appearance of endocrine cells in the splenic lobe of the embryonic chick pancreas.
    Cowap J
    Gen Comp Endocrinol; 1985 Nov; 60(2):131-7. PubMed ID: 2866143
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prenatal development of the human pancreatic islets. Immunocytochemical identification of insulin-, glucagon-, somatostatin- and pancreatic polypeptide-containing cells.
    Bocian-Sobkowska J; Zabel M; Woźniak W; Surdyk-Zasada J
    Folia Histochem Cytobiol; 1997; 35(3):151-4. PubMed ID: 9276343
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Immunocytochemical studies of the development of basal cell types of human islet organs].
    von Dorsche HH; Fält K; Hahn HJ; Reiher H
    Acta Histochem Suppl; 1988; 35():137-43. PubMed ID: 2901775
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sequential morphological changes in pancreatic islets of spontaneously diabetic rats.
    Gómez Dumm CL; Semino MC; Gagliardino JJ
    Pancreas; 1990 Sep; 5(5):533-9. PubMed ID: 1978314
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The endocrine pancreas of Alligator mississippiensis. An immunocytochemical investigation.
    Buchan AM; Lance V; Polak JM
    Cell Tissue Res; 1982; 224(1):117-28. PubMed ID: 6124317
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A study of the structural and biochemical development of human fetal islets of Langerhans.
    Goldman H; Wong I; Patel YC
    Diabetes; 1982 Oct; 31(10):897-902. PubMed ID: 6130014
    [No Abstract]   [Full Text] [Related]  

  • 58. An ultrastructural study on the endocrine pancreas of Caiman latirostris, with special reference to pancreatic motilin cells.
    Ono K; Yamada J; Pai VD; Kitamura N; Gregório EA; Yamashita T; Campos VJ
    Arch Histol Cytol; 1991 Jul; 54(3):349-57. PubMed ID: 1683242
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of a lobe in the adult human pancreas rich in pancreatic polypeptide.
    Malaisse-Lagae F; Stefan Y; Cox J; Perrelet A; Orci L
    Diabetologia; 1979 Dec; 17(6):361-5. PubMed ID: 395002
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A quantitative immunofluorescent study of the endocrine cell populations in the developing human pancreas.
    Stefan Y; Grasso S; Perrelet A; Orci L
    Diabetes; 1983 Apr; 32(4):293-301. PubMed ID: 6131849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.