These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 6108139)
1. 3,4-dihydroxyphenylacetic acid (DOPAC) and the rat mesolimbic dopaminergic pathway: drug effects and evidence for somatodendritic mechanisms. Beart PM; Gundlach AL Br J Pharmacol; 1980 Jun; 69(2):241-7. PubMed ID: 6108139 [TBL] [Abstract][Full Text] [Related]
3. Differential effects of forced locomotion, tail-pinch, immobilization, and methyl-beta-carboline carboxylate on extracellular 3,4-dihydroxyphenylacetic acid levels in the rat striatum, nucleus accumbens, and prefrontal cortex: an in vivo voltammetric study. Bertolucci-D'Angio M; Serrano A; Scatton B J Neurochem; 1990 Oct; 55(4):1208-15. PubMed ID: 2398355 [TBL] [Abstract][Full Text] [Related]
4. Acute administration of clozapine, thioridazine and metoclopramide increases extracellular DOPAC and decreases extracellular 5-HIAA, measured in the nucleus accumbens and striatum of the rat using in vivo voltammetry. Maidment NT; Marsden CA Neuropharmacology; 1987; 26(2-3):187-93. PubMed ID: 2438582 [TBL] [Abstract][Full Text] [Related]
5. NMDA antagonists block restraint-induced increase in extracellular DOPAC in rat nucleus accumbens. Serrano A; D'Angio M; Scatton B Eur J Pharmacol; 1989 Mar; 162(1):157-66. PubMed ID: 2566493 [TBL] [Abstract][Full Text] [Related]
6. In vivo dialysis measurements of dopamine and DOPAC in rats trained to turn on a circular treadmill. Sabol KE; Richards JB; Freed CR Pharmacol Biochem Behav; 1990 May; 36(1):21-8. PubMed ID: 2349264 [TBL] [Abstract][Full Text] [Related]
7. [Role of the presynaptic receptors in the control of dopamine synthesis in the striate complex and nucleus accumbens]. Palarea MD; Castro R; Arévalo RM; Rodríguez-Díaz M Rev Esp Fisiol; 1986 Mar; 42(1):71-5. PubMed ID: 3715157 [TBL] [Abstract][Full Text] [Related]
8. Repeated atypical neuroleptic administration: effects on central dopamine metabolism monitored by in vivo voltammetry. Maidment NT; Marsden CA Eur J Pharmacol; 1987 Apr; 136(2):141-9. PubMed ID: 3595718 [TBL] [Abstract][Full Text] [Related]
9. Opposite changes in dopamine utilization in the nucleus accumbens and the frontal cortex after electrolytic lesion of the median raphe in the rat. Herve D; Simon H; Blanc G; Lemoal M; Glowinski J; Tassin JP Brain Res; 1981 Jul; 216(2):422-8. PubMed ID: 7248783 [TBL] [Abstract][Full Text] [Related]
10. Central dopaminergic neurons: effects of alterations in impulse flow on the accumulation of dihydroxyphenylacetic acid. Roth RH; Murrin LC; Walters JR Eur J Pharmacol; 1976 Mar; 36(1):163-71. PubMed ID: 177297 [TBL] [Abstract][Full Text] [Related]
11. In vivo voltammetric and behavioural evidence for somatodendritic autoreceptor control of mesolimbic dopamine neurones. Maidment NT; Marsden CA Brain Res; 1985 Jul; 338(2):317-25. PubMed ID: 2992688 [TBL] [Abstract][Full Text] [Related]
12. Loss of dopamine terminals in the medial prefrontal cortex increased the ratio of DOPAC to DA in tissue of the nucleus accumbens shell: role of stress. King D; Finlay JM Brain Res; 1997 Sep; 767(2):192-200. PubMed ID: 9367247 [TBL] [Abstract][Full Text] [Related]
13. Levels of CCK immunoreactivity and dopamine in the nucleus accumbens after 6-hydroxydopamine lesions of the ventral tegmental area and the nucleus accumbens. Igarashi Y; Wiegant VM; Van Ree JM Neuropeptides; 1989; 14(2):71-6. PubMed ID: 2812290 [TBL] [Abstract][Full Text] [Related]
14. Increased utilization of dopamine in the nucleus accumbens but not in the cerebral cortex after dorsal raphe lesion in the rat. Hervé D; Simon H; Blanc G; Lisoprawski A; Le Moal M; Glowinski J; Tassin JP Neurosci Lett; 1979 Dec; 15(2-3):127-33. PubMed ID: 530523 [TBL] [Abstract][Full Text] [Related]
15. Serotonin microinfusion into the ventral tegmental area increases accumbens dopamine release. Guan XM; McBride WJ Brain Res Bull; 1989 Dec; 23(6):541-7. PubMed ID: 2575444 [TBL] [Abstract][Full Text] [Related]
16. Opposite changes in the mesolimbic dopamine metabolism in the nerve terminal and cell body sites induced by locally infused baclofen in the rat. Yoshida M; Yokoo H; Tanaka T; Emoto H; Tanaka M Brain Res; 1994 Feb; 636(1):111-4. PubMed ID: 8156399 [TBL] [Abstract][Full Text] [Related]
17. Neurochemical studies of the mesolimbic dopaminergic pathway: somatodendritic mechanisms and GABAergic neurones in the rat ventral tegmentum. Beart PM; McDonald D J Neurochem; 1980 Jun; 34(6):1622-9. PubMed ID: 7381488 [No Abstract] [Full Text] [Related]
18. Neurochemical studies of the mesolimbic dopaminergic pathway: glycinergic mechanisms and glycinergic-dopaminergic interactions in the rat ventral tegmentum. Gundlach AL; Beart PM J Neurochem; 1982 Feb; 38(2):574-81. PubMed ID: 7108557 [TBL] [Abstract][Full Text] [Related]
19. Neurochemical evidence that cocaine- and amphetamine-regulated transcript (CART) 55-102 peptide modulates the dopaminergic reward system by decreasing the dopamine release in the mouse nucleus accumbens. Rakovska A; Baranyi M; Windisch K; Petkova-Kirova P; Gagov H; Kalfin R Brain Res Bull; 2017 Sep; 134():246-252. PubMed ID: 28802898 [TBL] [Abstract][Full Text] [Related]
20. The effects of chronic ethanol consumption on the mesolimbic and nigrostriatal dopamine systems. Pellegrino SM; Druse MJ Alcohol Clin Exp Res; 1992 Apr; 16(2):275-80. PubMed ID: 1534209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]